

Acoustical simulation of open-plan offices according to ISO 3382-3

Jens Holger Rindel & Claus Lynge Christensen Odeon A/S, Scion-DTU Denmark

Outline

- Introduction
- ISO 3382's ISO 3382 part 3
- Factors affecting acoustical performance
- Measurements
- Acoustical parameters
- Open-plan office example
 - Absorption
 - Screens
 - Background noise
- Conclusion

The ISO 3382 family

Acoustics -- Measurement of room acoustic parameters

- Part 1: Performance spaces
- Part 2: Reverberation time in ordinary rooms
- Part 3: Open plan offices

ACOUSTICS SOFTWARE

- ISO 3382-3: 2012 Acoustics Measurement of room acoustic parameters — Part 3: Open plan offices
- New parameters, including:
 - Spatial sound distribution of the A-weighted sound pressure level of speech
 - Spatial decay rate of speech
 - Spatial sound distribution of the speech transmission index
 - Distraction distance
 - Privacy distance
 - Background noise level
- Computer simulations instead of measurements

Factors affecting acoustical performance according to 3382-3

- Layout of work stations
- Absorption
- Height of screens and storage units
- Background noise
- Degree of work station enclosure
- Distance between work stations
- Room dimensions

Measurements 3382-3

- 1. The office must be furnished, but unoccupied
- 2. Sound source should be omni directional
- 3. Sources and microphones are placed on work stations, height 1.2 m above floor
- 4. A measurement line is made from one source position and a number of receiver positions in different distances
- 5. Min. 4 receivers, recommended 6-10
- 6. At least two measurement lines should be used, and the results are averaged

Calculations

Source power – normal effort unisex speech

At every measurement point:

- SPL(A) in octave bands, 125 8000 Hz
- Background noise in octave bands
- STI
 - The impulse response method is preferred (as Odeon)
 - Average of background noise is used for STI (as Odeon)

Target values

Parameter	Poor	Good	
Spatial decay rate, D _{2,S}	<5 dB	>= 7 dB	
SPL(A) at 4 metres, Lp, A, S, 4 m	> 50 dB	<= 48 dB	
Distraction distance, rD	> 10 m	<= 5 m	

Simulating ISO 3382-3 in Odeon 12B

- Model of room geometry fully furnished
- Full impulse response calculated (hybrid method)
- Diffraction over screens and storrage units etc. included
- Constant background noise easily included (L_{p,B})
- SPL(A) and STI parameters can be predicted
- ISO 3382-3 quantities are automatically calculated from a selected number of receivers
- Average results from at least 2 measurement lines
- Easy to include many workstations/receivers use > 10?

Example office

View into the ODEON model

1-point diffraction

Diffraction

- · Geometric path automatically detected
- Contribution calculated according to Allan D. Pierce

2-point diffraction

Diffraction

- · Geometric path automatically detected
- Contribution calculated according to Allan D. Pierce

Measurement lines

• Lines 1 and 2 with 7 mic. positions

ROOM ACOUSTICS SOFTWARE

• Lines 3 and 4 with 10 mic. Positions

Selecting receivers in Odeon 12B

Define /select a group of receivers for immediate display of

- D_{2,S,} , Lp,A,S, 4 m
- r_{D} and r_{P}

ROOM ACOUSTICS SOFTWARE

(and SPL_(A) versus distance) (and STI versus distance)

Single number quantities - Office 3

	Line 1	Line 2	Line 3	Line 4	Average
STI in nearest workstation	0,64	0,67	0,75	0,64	0,68
Distraction distance, $r_{\rm D}$, in m	8,20	10,14	10,53	7,09	9,0
Privacy distance, $r_{\rm P}$, in m	22,38	24,08	21,70	19,13	21,8
Spatial decay rate of A-weighted SPL of speech, $D_{2,S}$, in dB	6,05	6,11	6,74	5,12	6,0
A-weighted SPL of speech at 4 metres, $L_{p,A,S,4 m}$, in dB	48,5	50,2	50,9	46,0	48,9
Average A-weighted background noise, $L_{p,A,B}$, in dB	38	38	38	38	38

Three office versions

- Office 1: As existing, absorption in ceiling
- Office 2: Reflective ceiling

DOM ACOUSTICS SOFTWARE

Office 3: As no. 1, plus absorbing baffles and 1.25 m screens

	Office 1	Office 2	Office 3
T ₂₀ (500 - 1000 Hz) in s	0,5	1,1	0,3
STI in nearest workstation	0,71	0,61	0,68
Distraction distance, $r_{\rm D}$, in m	13,8	10,1	9,0
Privacy distance, r _P , in m	33,3	37,8	21,8
Spatial decay rate of A-weighted SPL of speech, D _{2,S} , in dB	4,4	3,8	6,0
A-weighted SPL of speech at 4 metres, $L_{p,A,S,4 m}$, in dB	51,0	56,5	48,9
Average A-weighted background noise, L _{p,A,B} , in dB	38	38	38

Spatial distribution curves, $L_{p,A}$

Spatial distribution curves, STI

Variation of screen height

Office 3, Screen height	1,25 m	1,50 m	1,75 m
STI in nearest workstation	0,68	0,67	0,67
Distraction distance, $r_{\rm D}$, in m	9,0	8,4	8,0
Privacy distance, $r_{\rm P}$, in m	21,8	19,8	18,7
Spatial decay rate of A-weighted SPL of speech, $D_{2,S}$, in dB	6,0	6,6	<u> </u>
A-weighted SPL of speech at 4 metres, $L_{p,A,S,4 m}$, in dB	48,9	48,6	じ 48,4
Average A-weighted background noise, $L_{p,A,B}$, in dB	38	38	38

Increasing the screen height means:

- $r_{\rm D}$ and $r_{\rm P}$ decrease
- D_{2,S} increases

Variation of background noise

Average A-weighted background noise, <i>L_{p,A,B}</i> , in dB	40	45	50
STI in nearest workstation	0,64	0,54	0,40
Distraction distance, $r_{\rm D}$, in m	7,1	<mark>ల</mark> 2,5	-
Privacy distance, r_{P} , in m	19,1	14,0	8,6

Increasing the background noise means:

- $r_{\rm D}$ and $r_{\rm P}$ decrease
- STI in nearest workstation goes down

(Actually, r_D can be negative, i.e. no result)

Conclusion

- The new parameters behaves differently to
 - Absorption
 - Screens
 - Background noise
- Computer simulations can be used to evaluate alternative solutions
- In order to meet target values for good acoustic conditions – absorbing ceiling, 1.75 m screens and approx. 43 dB back ground noise is needed.
- More factors can be altered in new open plan office design