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Abstract: Rooms for music rehearsal, sound studios, control rooms, etc., need a smooth frequency response. For that reason,
the frequencies of the room modes should be spread as well as possible, and this is controlled by the aspect ratios of the
dimensions. The relative variance of the frequency spreading of the lowest 25 room modes is applied as a quality criterion.
The results have revealed that the length-width ratio is much more important than the width-height ratio. The length-width

ratio should be within 1.15-1.45. The height can be chosen more freely without compromising the acoustical quality. © 2021
Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (hiip://creative-
commons.org/licenses/by/4.0/).
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1. Introduction

Rooms used for music, speech. or acoustical measurements need to have good acoustical properties. In small rooms, say
up to 300m?, it is a challenge that the density of room modes is sparse at low frequencies. For that reason, it is important
to design the rooms in such a way that the room modes at low frequencies are spread as well as possible. The low fre-
quency range is here defined as 20-200 Hz. The frequency distribution of the room modes is dictated by the room dimen-
sions or, more precisely, by the aspect ratio between the dimensions.

The upper limit of volume where the analysis is valid is not exact. It can be related to the physics, ie., the
dimensions related to the wavelength, or to the human perception of sound. Setting the lower limit of the frequency range
to 20 Hz, the lowest mode will be below that frequency if the longest dimension exceeds 8.6 m. With the most common
aspect ratios of the room, this longest dimension corresponds quite well with a volume around 300 m’.

Talking, singing, or playing a musical instrument, the person acts as a sound source and listener at the same
time. When the distance to one of the walls exceeds 8.6m, the sound reflection from that wall arrives with a delay of
more than 50 ms, which means that the reflection may be audible as an echo. Thus, it may be argued that the perception
of the sound changes from the frequency domain to the time domain when the volume exceeds a limit around 300 m>.

The study of acoustic quality of small rectangular rooms and the importance of aspect ratios has been the topic
of a vast number of research papers since the early days of room acoustics around 1900. The results have often been in
the form of suggested specific optimum aspect ratios. A rectangular room is characterized by the dimensions length (I),
width (w), and height (h). In the following, it is assumed that / >w > h. Consequently, if the height of a room happens to
be greater than the width, the meaning of the symbols 4 and w is switched.

Traditionally, the aspect ratios have been presented by numbers normalized by the height, i.e., in the form (1:w/
h:l/h). However, it is realized in the present study that a better representation is by the pair of ratios w/h and Il/w, i.e., the
ratio between the two smaller dimensions and the ratio between the two larger dimensions. It is found that these ratios do
not have equal importance for the distribution of the normal modes and, consequently, for the acoustic quality of the
room. While [/w should be within a narrow range, w/h has minor importance.

2. Previous work

Already Sabine (1900) commented on the question of room dimension ratios: “Thus the most definite and often repeated
statements are such as the following, that the dimensions of a room should be in the ratio (2:3:5), or according to some
writers, (1:1:2), and others, (2:3:4); it is probable that the basis of these suggestions is the ratio of harmonic intervals in
music, but the connection is untraced and remote.” Sabine was very skeptical of such suggestions, and with good reason;
the mentioned dimension ratios are not good, and indeed (1:1:2) is the worst possible, as we shall see later.

Volkman (1942) suggested different ratios based on 2" and 2?”°, and he presented a diagram with recom-
mended ratios for different room sizes, e.g., (1:1.26:1.59) or rounded (1:1.25:1.6) for small rooms and rounded (1:1.6:2.5)
for average sized rooms. The former ratio has often been used for the design of reverberation chambers for acoustical
measurements.

A theoretically based study of aspect ratios in rectangular rooms was published by Bolt (1946). He studied the
statistical distribution of the frequency interval between the modes in the lower frequency range. Approximately 25 modes
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were used within a lower and upper limiting frequency, depending on the volume. Thus, the results were to some extent
dependent on the volume. The optimum aspect ratio was found to be around (3:4:5), i.e., (1:1.33:1.67).

Louden (1971) looked at the standard deviation of the frequency spacing of the modes. In the calculations, he
used all modes up to a limiting frequency that was volume-dependent and not higher than six times the lowest mode. The
best result was achieved with the ratio (1:1.4:1.9), while the worst was (1:1.4:2.8).

Walker (1993) wrote a report for the BBC on optimum aspect ratios for studios, control rooms, and listening
rooms. He applied a mean square room quality index very similar to that of Bolt but based on all modes up to 120 Hz.
Thus, the results would change a little with changing volume. For a 200m® room, two optimum aspect ratios were
identified, (1:1.19:1.40) for a high room and (1:1.75:2.2) for a room with more practical height, namely 3.7 instead of
4.9m. Based on the analysis, Walker proposed a criterion for acceptable room proportions; 1.1-w/h <I/h < 4.5-w/h—4.

Cox and D’Antonio (2001) applied an image source model with source in one corner and receiver in the oppo-
site corner to calculate the frequency response. By numerical optimization, the room dimensions were changed to achieve
the flattest possible frequency response in the frequency range 20-200Hz. They found the worst-case ratio to be
(1:1.075:1.868), but they did not report any of the optimized aspect ratios.

A similar principle was applied recently by Meissner (2018), who looked at the calculated frequency response
between 20 and 200 Hz. The smoothness of the frequency response was used as a criterion, comparing the frequency
response with a second-order polynomial and the normalized correlation coefficient as criterion for the smoothness. A
drawback that makes this method complicated is that the result depends not only on the room aspect ratio, but also on
the absolute volume of the room and on the absorption coefficients of surfaces. Higher absorption means more shallow
room modes with increased bandwidth and thus improved smoothness. A small volume means more focus on the lowest
room modes, which naturally are more separated than the higher room modes. In a large room volume, the lowest room
modes are below 20 Hz and thus not within the frequency range being analyzed. For a volume of 150 m>, the following
dimension ratios were found to produce very smooth frequency responses: A (1:1.20:1.45), B (1:1.40:1.89), and C
(1:1.48:2.12). The letters A, B, and C are used as labels for these optima in the following. For a small volume of 50 m>,
two optima were detected, one close to C and another at (1:2.55:3.44). The problem with the latter is that the height of
the room is only 1.8 m, which means that the result is not applicable in practice.

3. Normal modes in a rectangular room

A rectangular room with dimensions /, w, and h has normal modes with the natural frequencies f; calculated with the formula

S OREEG)

Here, c is the speed of sound in air, and (n,, 1y, n,) are the modal numbers. The index i is the number of the mode when
all room modes are arranged in order of increasing frequency. Thus, f; is the natural frequency of the first mode (1, 0, 0)
when [>w > h.

The normal modes have a strong influence on the frequency response at low frequencies. For the frequency
range 20-200 Hz, the frequency response is calculated for two rooms with the volume 150 m> and very different aspect
ratios (see Fig. 1). All surfaces are assumed to have the absorption coefficient 0.2. The details of the calculation method
are given by Rindel (2015, 2016).

The curves in Fig. 1 have peaks that can be related to the natural frequencies of the normal modes, and the
peaks appear reasonably separated up to around 100 Hz. At higher frequencies, the modes are too close together to allow
the individual modes to be identified. Comparing the two curves in Fig. | makes it clear that the cubical room has fewer
and stronger peaks than the room with optimum aspect ratios. The reason is that many modes coincide at the same fre-
quency in the cubical room. The frequency distances between the first 25 modes are displayed in Fig. 2.

While none of the modes coincide in the room with optimum aspect ratio, many modes have zero frequency
interval in the cubical room, and only seven of the 24 intervals are non-zero. The frequency spacing of the modes can be
used to quantify the acoustical properties of a room at low frequencies.

4. Coupling between a musical instrument and a room

Playing a musical instrument in a room means a coupling acoustically between the instrument and the room. Thus, the
room behaves as an acoustic extension to the instrument. While a good room cannot compensate for a mediocre instrument,
it may be assumed that an acoustically bad room can ruin the sound qualities of a good musical instrument. A good music
room should support the musical sounds as well as possible, but without favoring some tones at the expense of other tones.
Imagine playing on a piano a chromatic scale from C; (32.7Hz) to C, (65.4Hz) in each of the two rooms referred to in
Fig. 1. In the cubical room, the sound level will vary up and down and the tones will sound unequal, while the variation in
sound level throughout the scale will be very small when playing in the room with optimum dimension ratios.

While the importance of a smooth transfer function is undisputed in sound studios and control rooms, it can
only be assumed to be equally important in music rehearsal and practice rooms. No evidence for this has been found in
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Fig. 1. Calculated frequency response between 20 and 200 Hz for two 150 m® rooms, one with optimum dimension ratios (1:1.20:1.45) and the
other one with cubical shape (1:1:1). SPL, sound pressure level.

the acoustical literature. So, it is not known to what extent a musician can perceive and appreciate the difference between
a room with good or bad distribution of the normal modes. This would be an interesting topic for future research.

5. Frequency spacing index (FSI)

The acoustical quality criterion applied here is based on the frequency distribution of the room modes. Thus, the volume
and absorption properties are not involved. Whether this is an advantage or not can be discussed. On one side it is a fact
that the smoothness of the frequency response increases with increasing absorption of the surfaces. On the other hand,
increasing the absorption coefficient would tend to blur the effect of different aspect ratios, and with high absorption, the
room approaches an anechoic room, which has a perfectly flat frequency response.

The FSI is the normalized relative variance of the intervals between the low frequency room modes when
arranged in order of increasing frequency. The FSI y/(n) is calculated by the formula

b =13 (%) @

—1
1

wheren is the number of modes considered, f; is the frequency of the first mode, f, is the frequency of mode number #, ¢
is the frequency difference between two neighboring modes, and the average frequency spacing is & = (f, — f;)/(n — 1).

The FSI for the first 25 room modes 1/(25) is applied here as a quantitative measure of the room acoustic quality
at low frequencies. The FSI was first used by Bolt (1946) and later by Walker (1993), but in slightly different ways, namely
within a lower and upper limiting frequency depending, on the volume.

The FSI should be as low as possible, and the (unrealistic) theoretical ideal is } =1, corresponding to perfectly
equal spacing of the modes. In a real room, the lowest possible FSI is iy = 1.3 obtained for the aspect ratio (1:1.20:1.45).
This is the same as the optimum A found by Meissner (2018) using a different criterion, namely the smoothness of the
frequency response.

6. Results

The FSI is calculated as function of the two ratios w/h and I/w in steps of 0.05 within a representative range from 1 to 3
and from 1 to 2, respectively. The result is displayed as a contour-plot in Fig. 3.
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Fig. 2. The frequency intervals between the first 25 normal modes in two 150 m® rooms, one with optimum dimension ratios (1:1.20:1.45) and
the other one with cubical shape.
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Fig. 3. Contour-plot of FSI /(25) as a function of aspect ratios w/h and I/w. Inside the red regions where 1/(25) < 1.6, the spread of the modes
is good. Outside the green region where 1/(25) > 1.8, the spread of the modes is poor, and the corresponding aspect ratios should be avoided.
The solid blue line is the regression line for the three aspect ratios labelled A, B, and C. The two horizontal dashed lines mark the upper and
lower limit of the proposed simple design criterion for [/w. The dashed red and blue curves indicate the I/h ratios 2 and 3, respectively.

The nearly optimum aspect ratios are those with y/(25) < 1.6 shown in the red contour in Fig. 3. The centers of
the red regions correspond very well with the optima A, B, and C found by Meissner (2018). An additional good region
(D) is seen around w/h=2.7 and l/w=1.3.

Looking at Fig. 3, the most striking observation is the week dependency of w/h and the strong dependency of
I/w. This means that the aspect ratio of the two larger dimensions is more important than the aspect ratio of the two
smaller dimensions. The influence of w/h is so weak that the condition w/h =2 only gives rise to a minor decrease in
acoustic quality. The same is true for the condition I/h=2. Thus, the traditional rule-of-thumb that the aspect ratio of 2
between any of the room dimensions should be avoided seems to be true only for the ratio of the two longer dimensions
I/w and less important for the other ratios w/h and I/h.

7. Discussion

Examples of room aspect ratios from the literature and some interesting cases from the present analysis are collected in
Table 1 and rank-ordered from best to worst. The optimum ratios in the top are those from Meissner (2018) labelled A,
B, and C and one of the optima from Walker (1993) that is very close to the A case.

Case D is the additional local optimum identified in one of the red regions in Fig. 3. However, we need to be
very cautious about this because it describes a very flat room. If the volume is 300 m’, the height is only 3.1m, and for
volumes below 200 m?, the height is less than 2.7 m. In rooms for singing or playing musical instruments, the height must
be sufficient to avoid tonal coloration, and in a rehearsal room, the height is important for a good blend of the sound
from more instruments. For that reason, case D cannot be recommended for music rooms. It may work fine for a dance
studio and other rooms where singing or playing of musical instruments is not the top priority.

Next in the list in Table 1 is the case corresponding to (3:4:5), which was the optimum found by Bolt (1946).
The ratio of (1:1.26:1.59) recommended by Volkman (1942) is also good, whereas one of his alternative recommendations
(1:1.59:2.52) does not perform well. The golden ratio is sometimes claimed to be a good choice for sound studios, but it
comes rather low on the list and thus cannot be recommended.

At the bottom of the list are the cube and two variations of the cube, namely the “half cube” (1:2:2) that is a flat
room with the height equal to half the height of the cube, and the “double cube” (1:1:2) that is a long room with the
length twice the length of the cube.

The examples listed in Table 1 reveal some unexpected findings. Although the cubical room is in the bottom of
the list, the double cube is even worse. The explanation is that in the double cube, length and width are bigger and thus
the first natural frequencies are lower and the frequency intervals are larger than in the cube with the same volume.

Another surprise is the case (1:1.45:2), which is labelled * in the table. This case has (25) =1.65 and is ranked
as equally good as the Volkman 1 optimum, even though the length-to-height ratio is 2. The next case on the list labelled
** is also quite good, even though the length-to-height ratio is 3.

To understand these results, we need to look more closely at the two ratios w/h and I/w. The best rooms have
I/w within the range 1.15 <I/w < 1.45. That includes the two rooms with I/h equal to 2 and 3. The rooms that perform
badly have either I/w < 1.15 or I/w >1.45. This observation points at I/w as an important parameter for aspect ratios
of rooms. The I/w ratio may be the most important single parameter for evaluating acoustical quality of small rooms. The
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TABLE. 1. Selected examples of room aspect ratios in rank order from best to worst, using the FSI as acoustical quality measure.

Label wih I'h A% FSI Quality
A 1.20 1.45 1.21 1.33 Best
Walker 1 1.19 1.40 1.18 1.36
B 1.40 1.89 1.35 1.51
C 1.48 2.12 1.43 1.54
D 2.75 3.57 1.30 1.56
Bolt 1.33 1.67 1.25 1.59
Volkman 1 1.26 1.59 1.26 1.65
* 1.45 2 1.38 1.65
*k 2.30 3 1.30 1.68
Walker 2 1.75 2.20 1.26 1.78
Volkman 2 1.59 2.52 1.59 1.81
Golden ratio 1.618 2.618 1.618 1.94
2 3 1.5 2.16
Cox and D’Antonio (bad) 1.075 1.868 1.738 2.39
2 4 2 2.70
1 4 4 2.74
1 3 3 3.00
Louden (bad) 1.4 2.8 2 3.01
Half cube 2 2 1 3.28
Cube 1 3.71
Double cube 1 2 2 391 Worst

w/h ratio, on the other hand, seems to have very little influence on the results. In Fig. 3, it is seen that it is important to
keep w/h >1, but little happens around w/h =2 and w/h=3.

Looking at the three very good aspect ratios labelled A, B, and C and marked in Fig. 3, they are approximately
located on a straight line. The linear regression line through the points has the formula

I =2.3558 - w—1.3838 - h. (3)

Another observation, also seen in Table 1 is that the three optimum aspect ratios A, B, and C are characterized by
I/wa wih. This implies that w is approximately the geometrical average of I and h and that the volume V=1Ilw-h ~ w’.
More precisely, it is found that

w=1,007-VV. 4

This relationship is depicted in Fig. 4. The figure also presents graphs for the height and length as functions of volume for
each of the three optimum aspect ratios. It is seen that at 300 m>, the length is between 8and 10m, and the height is
between 4.5 and 5.5m.

8. Suggested application for room design

For music rehearsal rooms and studios where good acoustics has high priority, one of the three best aspect ratios A, B, or
C should be strived for. In addition to the three dimensions of the room, the required volume is a parameter. Fig. 4 may
be helpful in finding solutions for volume and room dimensions.

In a practical situation, it is often so that the height of the room is fixed. As an example, we set h =4.5m. Then
it is possible to meet one of the optimum aspect ratios with volumes of either 155, 240, or 280 m> (see Fig. 4). In the latter
case, we read from the figure that the dimensions should be 4.5, 6.5, and 9.5m. A different application of Fig. 4 is that the
desired volume is given. Then the graphs can be used to find which room dimensions will meet one of the optimum
aspect ratios. For example, a 50 m® room should have height between 2.5 and 3.1 m. For any of the three optimum aspect
ratios, the width is linked to the volume as in Eq. (4).

If the acoustical requirements are not very strict, the aspect ratios can be chosen near the optima by using the
regression line in Eq. (3). A reasonably smooth frequency response is ensured when the FSI is y(25) < 1.75, which is the
case for any point at the line if w/h is within 1.1-1.6.

With reference to Fig. 3, a very simple design rule is 1.15 <l/w < 1.45 and w/h >1.1. In addition, a value of w/h
close to 2 should be avoided. For rooms with less demanding acoustics, it may be sufficient to require 1.1 < I/w < 1.6.
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Fig. 4. Relation between volume and length, width, and height for the optimum aspect ratios A, B, and C. The black arrows show as an example
three alternative volumes for a room height (h) of 4.5 m and the corresponding widths (w) and lengths ().

An important finding is that the length-to-width ratio should not exceed 1.6. However, this applies to small
rooms only. For rooms with volume much larger than 300 m°, the lowest room modes are well below 20 Hz, and the fre-
quency spacing of the modes is not a relevant acoustical parameter. The classical concert halls with shoe-box shape often
have length-to-width ratios of 2 or more, which is natural because the audience area occupies a major part of the floor
area, and this aspect ratio is not a problem in such large rooms.

9. Conclusion

The influence of the aspect ratio of room dimensions on the frequency distribution of the room modes has been studied
using the relative variance of the frequency intervals as a criterion for the acoustical quality. The study deals with small
rooms limited to a maximum of 300 m>. Assuming that the length and width are greater than the height, it is found that
the length-width ratio is much more important than the width-height ratio. The length-width ratios 1 and 2 are very bad
and should be avoided. On the other hand, the ratio of 2 between the length and height or between the width and height
has only minor influence. It is found that the length-width ratio should be within 1.15-1.45 to get a reasonably good fre-
quency spacing of the room modes. The height can be chosen more freely without compromising the acoustical quality.
Only the width-to height ratio should be greater than 1.1, and in rooms for singing or playing musical instruments, the
height must be sufficient to avoid tonal coloration and ensure a good blend of the sound. The findings apply to small
rooms for music practice and rehearsal, sound studios, control rooms, etc.
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