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ODEON APPLICATION NOTE 
Modelling simple rooms in ODEON 
 

AR, GK, CLC, JHR – June 2021 

Scope 
This application note presents the numerical and practical challenges posed by simple geometries in ODEON. 

The note focuses on one example of a flat rectangular room. 

1. Introduction 
In room acoustics, simple geometries can prove challenging to study, whether with traditional methods or 

in ODEON simulations. This might sound paradoxical, but this is exactly because common room acoustic 

theories assume a certain degree of complexity of the sound field. One of these assumptions is that the 

sound field is diffuse i.e., isotropic and with waves of random phase. 

For ODEON simulations, a well-known limitation is frequency, where results are only reliable above the 

Schroeder limit [1]. You can read more about it in Chapter 9, Calculation principles, in the ODEON manual 

[2]. As an energy model, ODEON does not include phase information in the simulation. Therefore, wave 

phenomena such as interference and standing waves cannot be represented. Another important condition 

for reliable simulations is a high reflection density, which is achieved by using a large number of rays. 

ODEON does not perform as well in anechoic or semi-anechoic environments, where the sound field is 

composed of only a few early waves (represented by rays), which are quickly absorbed. In particular, 

diffracted components are modelled only approximately in ODEON, so in the absence of other reflected 

components, unreliable results can be expected. 

This note focuses on the example of a rectangular room, which is commonly seen in buildings. Such rooms 

are atypical cases, where the sound field may not be diffuse. The reflection between parallel surfaces can 

trigger flutter echoes, which are usually unwanted. We will see that these rooms are particularly 

problematic when they present a certain degree of unevenness, for instance in terms of dimensions or 

absorption properties. The study focuses on reverberation time, which is a widely used room acoustic 

parameter. 

2. Theory 
A common way of assessing the room acoustic conditions of a room is to study its reverberation, in other 

words, how fast the sound energy decays. In that perspective, the reverberation time 𝑇60 is defined as the 

amount of time it takes for the sound energy to decrease by 60 dB in the room. A 60 dB decrease from 

usual sound levels practically means that the sound is not audible any more.   

The reverberation time is influenced by the amount of absorption in the room, which has led to well-known 

predictive formulas. Room acoustic calculations become particularly simple under a set of ideal conditions. 

In a three-dimensional diffuse sound field, with a sufficiently high modal overlap (above the so-called 
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Schroeder frequency), the acoustic energy is assumed to decay exponentially [3]. This is typically displayed 

in a dB scale, for which the sound decay with time is a straight line. Under these conditions, the Sabine 

equation relates the absorption in the room to the reverberation time, 

𝑇 =
55.3𝑉

𝑐𝐴
, 

where 𝑉 is the volume of the room, 𝑐 is the speed of sound and 𝐴 is the absorption area of the room. The 

Sabine equation can also be expressed as a function of the mean-free path 𝑙𝑚, 

𝑇 =
13.8𝑙𝑚
𝑐𝛼𝑚

, 

where 𝛼𝑚 is the mean absorption coefficient of the room 𝛼𝑚 =
𝐴

𝑆
, and 𝑆 is the total surface area of the 

room. What makes Sabine’s equation so popular, even to this day, is its simplicity and its clear inverse 

proportionality relation between the amount of absorption in the room and the resulting reverberation 

time. 

The reverberation time can also be evaluated more precisely by measurements or simulations. However, it 

is challenging to measure a decay of 60 dB, due to the presence of background noise. In that case, the late 

part of the decay curve flattens (see an example in Figure 1). In simulations, we might also want to avoid 

calculating 60 dB of decay in order to reduce calculation times.  

 

Figure 1: A typical measured impulse response. The curve becomes flat after it reaches the background 
noise. The ‘truncation time’ vertical line is located by ODEON automatically and indicates the (left) part of 
the response not affected by the background noise. From [2]. 

As a solution, other reverberation time parameters have been developed. The idea is to find the slope of 

the decay curve on a smaller portion of it, and then to extrapolate it to a 60 dB decay, assuming it is 

exponential. Some of the parameters used in ODEON are summarised in Table 1. 
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Table 1: Decay parameters included in ODEON by default. 

Parameter Start Stop 

𝑬𝑫𝑻 (Early Decay Time) 0 dB -10 dB 

𝑻𝟏𝟓 -5 dB -20 dB 

𝑻𝟐𝟎 -5 dB -25 dB 

𝑻𝟑𝟎 -5 dB -35 dB 

The EDT (Early Decay Time) focuses on the early part of the decay, containing the direct sound and early 

reflections. The three other parameters, T15, T20 and T30, are estimators of T60, and they focus on the late 

reverberation, which explains why they measure the decay from -5 dB, in order to exclude the direct sound. 

It should be noted that EDT varies with position, whereas the other reverberation time parameters 

characterize the room globally. The parameters are multiplied accordingly so that they are comparable with 

a 60 dB decay. For instance, for 𝑇20, a decay time is first estimated between -5 dB and -25 dB, thus covering 

20 dB, so it is then multiplied by 3. In ODEON, the squared impulse response is backwards integrated (this 

is the so-called Schroeder curve) and corrected for truncation, in order to reduce fluctuations [4]. The 

different reverberation parameters are then found by evaluating the slope of the Schroeder curve, using 

least-square fitting between the level bounds described in Table 1 [5]. One can totally create other decay 

parameters, based on different sections of the decay curve.  

For a perfectly exponential decay (i.e., straight line in a dB scale), all the decay parameters should yield 

similar values, provided that they stay above the noise floor. However, if the decay is not exponential, the 

parameters will differ. Each parameter will then be typical of the level range it was calculated on. For 

instance, EDT focuses on the early part, whereas T30 is more representative of the late part of the decay. 

This note focuses on so-called non-Sabine environments, in which the decay curves are bended, and 

therefore the Sabine theory does not hold. 

3. A simple example: rectangular room 

 

Figure 2: A rectangular room in ODEON with dimensions L*W*H = 30 m * 10 m * 3 m. 
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Let us consider a rectangular room with dimensions L*W*H = 30 m * 10 m * 3 m (see Figure 2). The 

dimensions are uneven, and the room is largely flat, with a much smaller height than the two other 

dimensions. Such uneven geometries are generally not recommended, as they favour strong acoustic 

phenomena, such as echoes or colouration. Rooms with relatively small aspect ratios behave more regularly. 

For example, [6] recommends length-to-width ratios between 1.15 and 1.45, although the study focuses on 

small rooms and modal phenomena (i.e., low frequencies), which cannot be simulated in ODEON.  

The surfaces are also assumed smooth, so the scattering coefficient is left to its default value in ODEON 

(1 %). As a result of the parallelism of the walls and the low scattering, the sound rays in the room do not 

mix well, which makes the sound field less diffuse, especially in the vicinity of the source. Further away from 

the source, the sound field becomes more reverberant. This can be well illustrated with the 3D billiard 

feature of ODEON. Figure 3 is a screenshot of the billiard, where balls are launched from a source in the YZ 

plane. Most of the balls remain close to this plane due to the low scattering. The same effect occurs in every 

plane parallel to the boundaries of the room. 

 

Figure 3: Billiard balls in ODEON, remaining close to the YZ plane due to low scattering at the surfaces 
belonging to this plane. 

In this note, we focus on two conditions: 

• Condition 1: all surfaces are assigned Material 10 (10 % absorption), so they are rather reflective. We 

still include a minimum absorption in order to allow the calculation of the Sabine equation. 

• Condition 2: the ceiling is assigned Material 90 (90 % absorption), which makes it much more absorbing 

than the other surfaces, still with 10 % absorption. 

In Condition 1, the rays propagate over a long distance, despite their deterministic direction, because of 

the low absorption of the surfaces. After many reflections, the sound field becomes more and more 

isotropic and closer to a diffuse reverberant field. However, in Condition 2, the small distance between the 

floor and the ceiling means that the vertical rays are subject to many reflections on the ceiling without 

being redirected towards other surfaces. Consequently, vertical rays are rapidly attenuated compared to 

other directions. Hence, the sound field can be understood as two energy systems (see Figure 4): 
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• A fast-decaying vertical field. 

• A slow-decaying horizontal field. 

The small amount of scattering in the model means that there is virtually no communication between these 

two systems. This description is similar to [7], where the sound field is divided into a grazing field (modes 

parallel to the ceiling) and a non-grazing field (oblique modes). 

 

Figure 4: Side-view of the rectangular room, showing the two energy systems that dominate the sound 
decay. 

4. Study of the decay curves 
In the following we place one source and two receivers in the room as shown in Figure 5. Receiver 1 is 

relatively close to the source (4 m), and Receiver 2 is further away (10 m). This section focuses on the 

Schroeder decay curves calculated at both receiver positions. In classic room acoustic theory, assuming a 

diffuse sound field, the decay is generally exponential – represented by a straight line in a dB scale. 

 

e  

Figure 5: Top-view of the rectangular room with the source and receivers. 

 

Note on the number of rays: especially for Condition 2, where the horizontal field is slowly decaying, we 

have to use a large number of late rays for the ODEON results to be reliable. We use 10 times the precision 

setting (that is, 10 x 16000 rays) [2]. 

0 8 16 24 32 40 48 metres

0

4

8

12

16 metres

P1

1

2

Odeon©1985-2020   Licensed to: Odeon A/S



Application note  
Modelling simple rooms in ODEON 

7 
 

4.1. Condition 1: Uniform absorption 

 

Figure 6: Decay curves for Condition 1 (Reflective surfaces) at Receiver 1. 

 

Figure 7: Decay curves for Condition 1 (Reflective surfaces) at Receiver 2. 

The decay curves per octave band for Condition 1 at receiver positions 1 and 2 are shown respectively in 

Figure 6 and Figure 7. For Receiver 1 (Figure 6), the decay curves do not follow an exponential decay, 

especially in the early part. This is due to the strong direct sound and the multiple strong early reflections 

which are definitely not representative of a diffuse sound field. In the later part of the sound field, the 

sound field becomes more diffuse and the decay is more exponential. Looking at Receiver 2 (Figure 7), 

further away from the source, the decay curves are closer to straight lines, although a slight knee point is 

still visible at about 0.1 s. At this receiver location, the sound field is less influenced by early reflections and 

the decay is closer to an exponential decay. This is because all surfaces of the room are equally reflective, 

which favours more and more reflection directions far away from the source. 

The linearity of the decay curves can be assessed by the non-linearity parameters ξ, calculated both for T20 

and T30, as well as the curvature C. ξ being above 10 ‰ means that the decay curve is not linear on the 

corresponding interval to estimate the decay parameter. For the decay to be properly exponential, C should 

ideally be below 10 %, while values above 15 % are not recommended  [2, 5]. Table 2 reports these values 

at both receiver positions. 
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Table 2: Non-linearity parameters and curvature for Condition 1 (Reflective surfaces). The values indicating 
a non-exponential decay are coloured in orange. 

Band (Hz) 63 125 250 500 1000 2000 4000 8000 

Receiver 1 

ξ (T(20)) (‰) 1.4 1.5 1.7 1.8 2 2.4 3.6 14.2 

ξ (T(30)) (‰) 0.5 0.5 0.6 0.7 0.7 0.8 1.2 4.2 

Curvature(C) (%) 1.1 1.1 1 1 0.9 0.6 -1.5 -4 

Receiver 2 

ξ (T(20)) (‰) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 

ξ (T(30)) (‰) 0.3 0.3 0.3 0.3 0.3 0.2 0.1 0.1 

Curvature(C) (%) 2.2 2.2 2.2 2.1 2.1 1.8 1.3 0.2 

At all octave bands, the curves are overall sufficiently linear. Even at Receiver 1, the slope variations are 

small according to these indicators. This is because the calculation of T20 and T30 excludes the first 5 dB of 

decay, precisely in order to remove the influence of the direct sound, which is particularly strong for 

Receiver 1. The 8 kHz curve at Receiver 1 is the only one that deviates slightly in the early part, where T20 is 

calculated (indicated in orange in the table).  

4.2. Condition 2: Absorbing ceiling 
The non-exponential nature of the decay is more pronounced if the absorption properties are unevenly 

distributed in the room, which is the case of Condition 2 with an absorbing ceiling. 

 

Figure 8: Decay curves for Condition 2 (absorbing ceiling) at Receiver 1. 
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Figure 9: Decay curves for Condition 2 (absorbing ceiling) at Receiver 2. 

The decay curves at Receiver 1 and Receiver 2 are shown in Figure 8 and Figure 9, respectively. At both 

receiver positions, the steep early part of the decay is due to the absorption of vertical sound components 

by the ceiling. The late part has a gentler slope and corresponds to the horizontal sound field, which is much 

less attenuated. Therefore, this second example does not follow the exponential decay expected from an 

ideal diffuse field. This is also visible in the non-linearity parameters, as shown in Table 3. The curves are 

slightly more linear at Receiver 2, but most parameters indicate a changing decay slope with time. 

Table 3: Non-linearity parameters and curvature for Condition 2 (absorbing ceiling). The values indicating a 
non-exponential decay are coloured in orange. Curvatures between 10 % and 15 % are highlighted in yellow. 

Band (Hz) 63 125 250 500 1000 2000 4000 8000 

Receiver 1 

ξ (T(20)) (‰) 37.9 21.2 18.9 17.2 16.3 18.1 35.4 83.2 

ξ (T(30)) (‰) 31.6 22.9 20.4 16.3 13 9.2 11.2 27.1 

Curvature(C) (%) 38.6 31.2 28.1 23.1 19.1 12.9 5.4 5.5 

Receiver 2 

ξ (T(20)) (‰) 26.4 15.7 12.3 8.1 6.1 4.6 2.9 8 

ξ (T(30)) (‰) 24.5 21.7 19.4 15.9 13.3 10.8 6 3 

Curvature(C) (%) 29.3 27.7 26.1 23.1 20.2 18.2 12.4 4.6 

5. Discrepancy between Sabine equation and ODEON results 
Sabine’s formula assumes a completely diffuse sound field in three dimensions, so it should be used with 

caution in real-life cases, where the sound field can be far from diffuse. This is the case of the studied 

rectangular room. 

5.1. Condition 1: uniform absorption 
Figure 10 compares different decay parameters calculated for Condition 1 (all walls with 10 % absorption) 

at the two receiver positions. 
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Figure 10: Condition 1. Comparison of decay parameters simulated by ODEON with the reverberation time 
calculated with Sabine formula. 

At Receiver 1, the Sabine calculation is rather close to all decay parameters, except for EDT at 4 kHz and 8 

kHz. The difference is due to the influence of strong early reflections that lead to a steeper decay in the 

early part – as shown by the decay curves in Section 4. For the rest of the curves, the decay is sufficiently 

linear to agree with Sabine’s equation. At Receiver 2, where the sound field is mostly reverberant and the 

decay in dB is more linear, the Sabine equation results are in good agreement with all the decay parameters 

calculated by ODEON. Overall, the uniform absorption properties lead to a sufficiently diffuse sound field 

to make the use of the Sabine equation meaningful enough. 

5.2. Condition 2: absorbing ceiling 
Figure 11 shows the ODEON reverberation times compared with Sabine results for Condition 2 (ceiling with 

90 % absorption). 

 

Figure 11: Condition 2. Comparison of decay parameters simulated by ODEON with the reverberation time 
calculated by Sabine formula. 
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The introduction of the extra absorption on the ceiling drastically reduces the Sabine reverberation time, 

down to about 0.5 s. However, the decay parameters simulated by ODEON differ greatly, not only from 

Sabine but also between each other. 

For Receiver 1, EDT is the closest to the Sabine result, because it registers the decay due to the absorption 

by the ceiling, which is the dominating effect. The other decay parameters, T15, T20 and T30, also include the 

much slower decay in the horizontal plane, where very little surface absorption occurs. Overall, the three 

reverberation parameters lead to considerably higher values than predicted by Sabine. The strong knee-

points between the early part and the late part of the decay can lead to inconsistencies when extrapolating 

the curves to calculate the reverberation times, so these values should be used with caution. 

Similar conclusions can be reached with Receiver 2. However, the more reverberant nature of the sound 

field means that the decay curves are more linear, leading to slightly more consistent results between the 

different reverberation times. In particular, using a longer decay interval results in a larger reverberation 

time, as it includes a gradually larger part of the slow decaying horizontal field. 

The difference between Sabine and late decay values such as T30 can be explained by the nature of the 

sound field, which is essentially horizontal in the late part. However, the Sabine equation assumes a 3D 

diffuse field. In addition, the absorbing ceiling has very little incidence on this horizontal field, because of 

virtually no mixing between the vertical and horizontal components. Therefore, the Sabine results are not 

to be trusted in this case. More generally, the decay parameters differ between each other because they 

describe different parts of the decay curve. They are also not representative of either of the two decay 

processes in play, as they are built under the assumption of an exponential decay. EDT remains a good 

descriptor of the fast-decaying early part, but the other parameters describe a mixture of both horizontal 

and vertical systems. T30 includes the larger proportion of the late slow-decaying part, so it is the parameter 

that describes it best, although it is still influenced by the early part. 

5.3. Adding absorption can increase the reverberation time 
Another counter-intuitive result is that adding absorption can lead to longer reverberation times, which 

contradicts Sabine’s equation. As an example, we compare Condition 2 (absorbing ceiling) to an even more 

absorbing case where the absorption of the floor is raised to 20 %. The table below compares the resulting 

T30 at position receiver 2. 

Table 4: Comparison of T30 at Receiver 2 between Condition 2 (absorbing ceiling) and added floor absorption 
of 20%. 

Band (Hz) 63 125 250 500 1000 2000 4000 8000 

Absorbing ceiling 90% 1.62 1.57 1.58 1.54 1.49 1.38 1.09 0.65 

Added floor absorption 20 % 1.64 1.61 1.62 1.58 1.52 1.41 1.1 0.64 

The additional floor absorption leads to a slight increase of T30 at all octave bands (up to 0.04 s at 125 Hz, 

250 Hz and 500 Hz). Indeed, the floor only affects the fast early decay in the vertical direction – the decay 

then becomes steeper, whereas the late slow horizontal decay remains the same. This is illustrated in Figure 

12 (the double slope effect is exaggerated). Therefore, the decay curve with added absorption gives more 

weight to the late horizontal field, which tends to increase late reverberation time parameters like T30. In 

addition, the increased absorption reduces the steady-state sound pressure level, which is illustrated as a 
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downward shift of the decay curve for Case 2 in Figure 12. It is possible that the lower sound levels will 

actually improve the acoustics of the room, despite the higher reverberation time. 

 

Figure 12: Effect of adding absorption on the floor. Schematic view of the decay curves. 

5.4. Effect of added scattering 
As discussed earlier, the lack of diffuseness explains the discrepancy between the Sabine theory and the 

ODEON simulations. The model with an absorbing ceiling can lead to a more diffuse field if more scattering 

is introduced [8]. This can be done by adding furniture in the room or increasing the scattering coefficient 

of the walls. Figure 13 shows the evolution of T30 (which was the value the furthest away from Sabine) with 

different scattering coefficients applied to all surfaces of the room. 

 

Figure 13: T30 simulated by ODEON for different amount of scattering, compared with the reverberation 
time calculated using the Sabine formula. The higher the scattering, the smaller the difference between 
simulations and Sabine. 

Similar results are obtained for the two receiver positions. Increasing the scattering coefficient leads to a 

lower T30, because more and more rays hit the ceiling and are thus attenuated, which amplifies the decay. 

It is worth noting that the 10 % scattering case still corresponds to relatively low scattering, but it results in 

significantly lower T30 values compared with the initial setup (1 % scattering). This illustrates that 
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introducing just a little more scattering has a strong influence on the calculation. Finally, when the 

scattering is set to “Full scatter” (Room Setup menu), the sound field becomes largely diffuse and the 

obtained T30 is in agreement with the Sabine theory. 

 
CAUTION! This last example simply illustrates the missing conditions to fulfil the Sabine assumptions. If 

the sound field is not diffuse in the room under study, the Sabine equation should be avoided in any case. 

6. Differences between simulation and reality 
Rectangular rooms are prone to discrepancies between simulations and measurements. The main issue is 

that the ODEON model might be “more perfect” than reality, where the walls are exactly parallel and they 

are modelled as too smooth surfaces. 

It is possible that the walls of the rooms are not as flat as in the model, or that additional objects, such as 

furniture, were excluded from the model for simplicity. These can be accounted for by increasing the 

scattering coefficient of the walls in ODEON (this is why we do not recommend setting scattering 

coefficients to 0). However, as shown in Section 5.4, the simulation results can be very sensitive to the 

scattering coefficient of smooth surfaces. 

The effect of the parallelism between surfaces is illustrated in the example below, where one of the side 

walls is tilted towards the inside of the room (see Figure 14). The top edge of the wall is brought forward 

by 5 cm, which results in an angle of 1° between the two side walls. The ceiling is 90 % absorbing in both 

models. The small tilt has virtually no effect on the reverberation time calculated with Sabine’s equation, 

because the geometry of the model is almost unchanged. 

 

Figure 14: Drawing showing the geometry with a tilted wall. Note: the tilt is exaggerated in the drawing. 

Figure 15 shows T30 for both models and the two receiver positions, compared to the Sabine reverberation 

time for the perfectly-angled room. The behaviour is the same at both receiver positions. Tilting the wall 

leads to a lower T30, thus bringing it closer to the Sabine result. The tilted wall has a similar effect to 

increasing scattering, as more rays are reflected towards the absorbing ceiling, which leads to a faster decay 
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than in the perfect rectangle case. The difference with an increased scattering coefficient is that the 

redirection is more deterministic, which leads to less diffuseness. This explains why T30 remains relatively 

high, compared to the high scattering results from Section 5.4. An interesting observation is that increasing 

the tilt from 5 cm up to 20 cm does not affect T30, because the process is mostly left unchanged, due to the 

low height of the room: rays tend to be redirected towards the floor, reflected towards the ceiling and 

absorbed there. 

 

Figure 15: The effect of tilting one wall in the overall perfectly right-angled room. As mixing between the 
three dimensions is achieved, the ODEON simulated T30 decreases. 

This example illustrates that any imperfection in the geometry can lead to significantly different results 

compared to a “perfect” numerical model. In that sense, the reality lies somewhere between the ODEON 

results and the diffuse Sabine case, depending on the actual amount of scattering. 

Another key aspect is the flatness of the room, which favours grazing incidence on the floor and the ceiling. 

This makes the result dependent on the accuracy of the angle-dependent absorption model [7]. If the 

absorption properties of the floor and the ceiling are not accurate in the model, the calculated results may 

not be realistic.  

7. Sensitivity to input data 
We have already shown that the simulation is sensitive to the lower end of the scattering coefficient scale. 

This is because changes in the scattering coefficient should be understood in a relative scale. For example, 

if the scattering coefficient is raised from 5 % to 10 %, it is multiplied by 2, which has a considerable effect 

on the calculation. In contrast, raising a scattering coefficient from 90 % to 95 % corresponds to a 

multiplication of scattering by 95/90 =1.06, thus having very little effect. 

This section focuses on the sensitivity to the absorption coefficient. We take the absorbing ceiling example 

as a reference case (the walls and the floor are 10 % absorbing; the ceiling is 90 % absorbing). We study 

three “small variations”: 

• Ceiling set to 95 % absorption, 

• Floor set to 5 % absorption, 

• One side wall set to 5 % absorption. 
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The other surfaces are left untouched. 

 

Figure 16: Various changes in absorption on different surfaces. Influence on T30 at receiver positions R1 
(Left) and R2 (Right). Comparisons are made with the reference case (ceiling 90 % absorbing, all other 
surfaces 10 % absorbing). 

Figure 16 reports T30 at both receiver positions. The behaviour is similar in both graphs. Changing the ceiling 

or the floor has very little effect on T30. As explained before, the ceiling leads to the absorption of early 

vertical rays, while the T30 value is mostly due to the slow decaying field in the horizontal direction. 

Therefore, the changes in the floor and the ceiling have very little influence on T30. Conversely, changing 

the absorption of one side wall from 10 % to 5 % has a considerable effect, as T30 is raised by up to 0.2 s. 

This also illustrates that the simulation results are particularly sensitive to the properties of reflective 

surfaces, as the reflected rays still carry considerable amounts of energy. 

In conclusion, the simulation examples show a great sensitivity of the simulation results to certain aspects 

of the model, including: 

• Scattering coefficient of flat surfaces (i.e., low scattering values); 

• Absorption coefficient of reflective surfaces (i.e., low absorption values); 

• Absorption coefficient of exposed surfaces (i.e., surfaces which are hit by a large number of rays). 

This is problematic because there is already much uncertainty about the input data, for instance in terms 

of random absorption coefficient [9]. Any inaccuracy in the absorption or scattering data has a strong 

impact on the simulation results, especially because only a few materials are used in the model. If there 

were many materials in the model, one should expect errors on input data to average out. 

8. Conclusion 
Rectangular rooms are a good example of challenging rooms to study and to model in ODEON. Uneven 

dimensions and uneven absorption lead to an atypical sound field, which does not decay exponentially. This 
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means that traditional room acoustic tools and methods, such as the Sabine equation or the calculation of 

reverberation times by extrapolation, should be used with caution. 

Furthermore, the studied models proved sensitive to various input data, including the scattering coefficient 

of flat surfaces, the absorption coefficient of reflective surfaces and the geometry (wall parallelism). As a 

result, the ODEON output might also be unstable or unreliable. This may be even more true when 

approximations such as absorption at grazing incidence form a considerable part of the calculation. 

Certain classes of rooms will therefore lead to uncertain results, whether with “traditional” approximate 

methods (such as Sabine formula) or ODEON simulations. These include the following aspects: 

• Simple geometries: few surfaces, perpendicular or parallel surfaces. 

• Uneven dimensions (e.g., flat rooms favouring two-dimensional sound fields). 

• Low scattering cases: smooth surfaces, empty rooms. 

• Uneven absorption: existence of both regions with very high absorption and very low absorption. 

The results are particularly sensitive to the absorption data of reflective surfaces. 

In these cases, the sensitivity of the calculation makes it fundamentally difficult to properly simulate 

acoustic measurements with ODEON. Therefore, we can expect differences between measurement and 

simulation data for such rooms.  

9. Guidelines for rectangular rooms 
We have shown that modelling a simple rectangular room in ODEON presents multiple challenges. Although 

the simulation results are uncertain, the following guidelines can help to ensure more reliable calculations: 

• Use a large number of rays to properly simulate the late part of the decay. 

• Pay attention to the aspect of the decay curves to check if the decay is non-exponential. 
o By visual inspection: bended decay curves. 
o By comparing the decay parameters: differences between T15, T20 and T30. 
o By checking the non-linearity parameters ξ: ξ above 10 ‰. 
o By checking the curvature C: C above 15 %. 

• If the decay is non-exponential, do not trust Sabine’s equation. 

• Caution! The model can be extremely sensitive to input data, and some of this data can be 
uncertain: 

o Parallel walls: are they exactly parallel in reality? 
o Scattering coefficient of flat surfaces. 
o Absorption coefficient of reflective surfaces. 

• It could be a good idea to have some reference measurements to compare with in order to adjust 
the input data. 

 

In addition, we have seen that such rectangular rooms are prone to unwanted acoustical effects such as 

flutter echoes. A solution can be to make the space more diffuse, which can be achieved in various ways: 

• Room geometry:  
o Avoid large flat surfaces. 
o Avoid parallel surfaces and perpendicular surfaces 
o Favour rooms with not too extreme aspect ratios (for instance, [6] recommends aspect 

ratios ideally between 1.15 and 1.45). 
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• Distribute the absorption in the room. 

• Add scattering, for instance by adding objects or diffusers. 
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