
Application note
Plotting the results of a multipoint response calculation

1

ODEON APPLICATION NOTE
Plotting the results of a multipoint response
calculation in Octave or Matlab

MAK – April 2024

1. Introduction
This note provides a short introduction to the program PlotMultipointResponse.m. The

program can be executed in both Octave (tested in version 7.2.0) and Matlab (tested in version

R2023b) and can be used to customize figures from data provided by ODEON’s multipoint

responses. By default, the figures produced by PlotMultipointResponse.m are similar to those

produced in the “Simulated vs. Measured and Targets” tab of the multipoint response within

ODEON, but can be customized by adjusting parameters within the code.

2. Downloading and opening the program
The program is contained in a ZIP file downloadable from odeon.dk > Learn > Application Notes,

in the description for this application note. The ZIP file contains various .m files, however the only

one that needs to be opened and run is PlotMultipointResponse.m, while the rest of the files

are functions. The code within the main file is commented for clarity, and a description of the code

is also given in the next section.

In order to run PlotMultipointResponse.m to produce the figures, the user will first need to

calculate multipoint responses within ODEON and export the results to a .txt file. Please note that

this must be done in the Multipoint response, by pressing Ctrl+A in the “Energy Parameters” tab,

any of the “Energy parameter bars” tabs, or the “Simulated versus Measured and Targets” tab.

3. Program structure
PlotMultipointResponse.m consists of three sections. To use the program, it is only necessary

for the user to specify the values of a few variables in the first section. However, if the user wants a

different output than the default output of the program, he/she will have to modify the second and/or

third section of the program. For that reason, descriptions of all three sections are given in the

following.

1) Define basic information:

Here the user should first specify the variables PlotReceivers and PlotFrequencies.

These determine the receivers and frequencies (in Hz) for which the results of the multipoint

calculation will be plotted. Since these variables are lists, they should be defined with square

brackets as, say,

Application note
Plotting the results of a multipoint response calculation

2

PlotReceivers = [1, 5, 2];

PlotFrequencies = [125, 500, 1000];

Please note that the lists do not have to be in ascending order, although this is usually

preferred.

 Then, the user should specify the value of GraphFraction. To explain what this

variable means, suppose that we want to plot the parameter Param and denote the difference

between its maximum and minimum value by a. When plotting Param, the program

chooses the y-axis to have the extent b = a/GraphFraction. In other words,

GraphFraction is the size of the part of the y-axis that contains the graph of Param

relative to the size of the displayed part of the y-axis. The role played by GraphFraction

is easily revealed by trying different values, e.g., 0.1 and 0.9.

Next, the user should specify the location (FileLocation) and the name

(FileName) of the .txt file containing the results of the multipoint response calculation.

These variables are strings and should be defined using single quotation marks (‘ ’).

Finally, the user should specify the variable ParameterName. This variable is a string

and holds the name of the parameter for which the results are plotted. In the program, the

comment next to this variable lists all parameter names that can be chosen.

2) Read data from file:

In this section, the results of the multipoint response calculation are read from file. This

requires no action from the user, but for modification purposes he/she should be aware of

the following. The program reads the active sources (SourceList), the active receivers

(ReceiverList), the list of frequencies for which values of the chosen parameter exist

(FrequencyList), the simulated values of the chosen parameter (ParamSim), the

measured values of the chosen parameter (ParamMeas), the difference between the

simulated and measured values of the chosen parameter in units of JND (ParamJND) and,

finally, a string (ParamExists) which is ‘Yes’ if the chosen parameter exists and ‘No’ if

it does not. While SourceList and ReceiverList both are lists, ParamSim, ParamMeas

and ParamJND are matrices with the number of rows being length(ReceiverList) and

the number of columns being length(FrequencyList). The results for the nth receiver

in ReceiverList are stored in the nth row of these matrices. A NaN-entry in these matrices

signifies that the value is not available.

Having read the data, the program goes on to determine the indices of the receivers

and frequencies chosen for plotting. If, for example, the multipoint response has been

calculated with receivers 1, 2, 4 and 5, such that ReceiverList = [1, 2, 4, 5], and

the user has chosen that results should be plotted for receivers 1, 5 and 2 (by choosing

PlotReceivers = [1, 5, 2]), we will have ReceiverIndices = [1, 4, 2]. If

PlotReceivers contains at least one receiver that is not contained in ReceiverList, the

program sets the variable ReceiversExist to ‘No’, and to ‘Yes’ otherwise. The

situation is completely analogous for the frequencies.

At the end of this section, the program checks if ParamExists, ReceiversExist

and FrequenciesExist are all ‘Yes’. If this is the case, the program proceeds to the third

Application note
Plotting the results of a multipoint response calculation

3

section. If at least one of the variables is ‘No’, the program terminates and no plots are

produced.

3) Plot data:

In this section, plots of the data are produced. The program distinguishes between STI

parameters (STI, STI(Female) and STI(Male)) and all other parameters. The reason for this

is that the STI parameters do not depend on frequency.

For the non-STI parameters, the program produces three types of plots. First, it plots

the chosen parameter as a function of frequency at the values 63 Hz, 125 Hz, 250 Hz, 500

Hz, 1000 Hz, 2000 Hz, 4000 Hz and 8000 Hz for each of the chosen receivers. Secondly, it

plots the difference between the simulated and measured values of the chosen parameter in

units of JNDs as a function of frequency at the values 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1000

Hz, 2000 Hz, 4000 Hz and 8000 Hz for each of the chosen receivers. Thirdly, it plots the

chosen parameter as a function of the receiver position for each of the chosen frequencies

(i.e. the values in PlotFrequencies).

For the STI parameters, the program plots the chosen parameter as a function of the

receiver position.

4. Example output
As an example, we now consider the room “Auditorium21 at DTU”, which is available in the rooms-

folder of ODEON. Choosing the early decay time (EDT) as the parameter to be plotted and setting

PlotReceivers = [1, 2];

PlotFrequencies = [125, 500, 2000];

gives the following figures 1-5.

Figure 1 The simulated and measured values of the EDT as a function of frequency at receiver 1.

Application note
Plotting the results of a multipoint response calculation

4

Figure 2 The simulated and measured values of the EDT as a function of frequency at receiver 2.

Figure 3 The difference between the simulated and measured values of the EDT in units of JNDs at

receiver 1.

Application note
Plotting the results of a multipoint response calculation

5

Figure 4 The difference between the simulated and measured values of the EDT in units of JNDs at

receiver 2.

Figure 5 The simulated and measured values of the EDT vs the receiver position for different, fixed

frequencies.

