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Summary

In room acoustic refurbishment/renovation projects, it is common to create a digital room model for

use in room acoustic prediction software such as ODEON. Before simulating changes it is desirable

to match the model, as well as possible, to existing conditions so that measured room acoustics

parameters are in fair agreement with the ones simulated in the digital model. The acoustic data of the

surface materials may be imprecise or indeed unknown. Therefore calibration has to be done manually

by the room acoustician, who changes the absorption coe�cients of the di�erent surfaces in the room

model in order to match measured parameters such as EDT , T30, TS , SPL, C50 and C80 against the

simulated ones in an iterative process. This process is time consuming; requiring many iterations,

and even so it can be di�cult to obtain a reasonable match. This paper presents an implementation

of a calibration tool utilizing a genetic algorithm to search through the M -dimensional search space

de�ned by the number M of the unknown surface materials.

PACS no. 43.55.Br, 43.55.Ka, 43.55.Mc

1. Introduction

The problem of optimizing the absorption coe�cients
of materials inside an acoustical room model to match
with measured data is well-known among room acous-
tic consultants. This task is usually performed man-
ually in an iterative process. Recently, a method for
estimating the absorption coe�cients of the surfaces
in a room was suggested, based on the inversion of
the measured energy decay. The method requires im-
pulse response measurements from 8 omnidirectional
microphones [1]. In this paper an application of ge-
netic algorithms is proposed for optimizing the ab-
sorption coe�cients. The method has been imple-
mented in the ODEON Room Acoustics Simulation
software [2]. Assuming that the room has none dif-
fuse conditions, then the room acoustics simulation
program should run a number of times using di�er-
ent absorption coe�cients as input and analyze the
results in order to derive the optimum absorption co-
e�cients. A very simple case would be a room where
the same material is applied to all surfaces and one
needs to �nd the absorption coe�cient which results
in some global reverberation time. If the sound �eld in
the room could be considered perfectly di�use a room
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acoustics simulation might not be needed. In fact, the
optimization problem could be e�ciently solved sim-
ply by using bi-sectional search [3] while changing the
absorption coe�cients. For realistic cases, however,
there will typical be 5- 15 materials present in the
room and the sound �eld may be far from di�use.
Indeed this may be what we want to investigate in
the �rst place. So when the absorption has been ad-
justed we should be able to evaluate acoustic parame-
ters like Early Decay Time EDT , Reverberation Time
T30, Center Time TS , Clarity C50, C80 [4], and their
variation with source and receiver position. The eval-
uation needs to be performed for each octave band
independently. In the ODEON software absorption
data and corresponding simulations are done in eight
octave bands from 63 Hz to 8000 Hz. As the search
space is multi-dimensional, a bi-sectional search does
not seem a feasible solution. Instead, one could sim-
ply use a brute force method where a large number
of simulations is run using random materials as in-
put (Monte Carlo method) and selecting the mate-
rials giving the best matching results. However, such
an approach seems to converge very slow. Instead of
all these methods, in this paper a Genetic Algorithm
(GA) is used as one type of search algorithm that is
e�cient for search in multi-dimensional search spaces
(multi-variable problems).
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2. Searching for absorption coe�-

cients using a genetic algorithm

Genetic algorithms (GA) are widely used for opti-
mization processes in diverse areas, such as industrial
design, arti�cial life systems and economics. The ori-
gins of GA go back to 1975 [6]. GA start with an en-
semble of individuals (chromosomes) and evolve new
and improved individuals by applying principles found
in molecular genetics and biology: crossover (recom-
bination), mutation, etc. In any stage of the evolution
the ensemble of individuals is called population and
corresponds to a generation. An individual is essen-
tially a candidate solution to the optimization prob-
lem and normally consists of more than one genes.
The criterion that is used from the evolution process
to create an improved generation is the �tness func-

tion. Properties of the individual that give good �t-
ness between simulated values and target values will
have better chances of propagating into the following
generations. The reason that GAs have become pop-
ular is their ability to �nd useful solutions in a very
complex search space having many minima/maxima
without getting stuck in the �rst occurring local min-
imum/maximum.
In our optimization problem there are eight di�er-

ent GAs that run independently for each octave band.
Translating the foregoing terms to our problem an in-

dividual consists of a complete set of absorption coef-
�cients for a particular frequency band, correspond-
ing to the di�erent materials in the room. Henceforth
we shall use the term material for describing its ab-
sorption coe�cient. One material is one gene. The
terms are shown in Table I. All frequency-dependent
GAs start with a random pass (Monte Carlo method)
where all individuals of the population are generated
with absorption coe�cients that vary randomly ac-
cording to a speci�ed range. This can be called 0th

generation. After this pass the evolution process is
initiated by �ltering out the best individuals as par-
ents and producing children that are likely to inherit
some of the advantages from their parents. During this
process the initial random absorption coe�cients are
constantly modi�ed according to genetic operators, as
described in section 2.3.

2.1. Target value and �tness function

In order to evaluate how well a room simulation model
with a given set of materials (an individual) matches
against the measured room one needs a �tness func-

tion (see Table I). The �tness function returns a num-
ber (�tness) to the GA that allows it to determine
which individual (candidate solution) is better than
others, controlling the genetic evolution. In our prob-
lem the GA seeks for individuals that minimize the
�tness value, while in other GA problems the criterion
might be a maximization of the �tness. In principle
it can be considered to evaluate directly how well the

Table I. Terms used in GA and their interpretation to our
acoustic problem.

GA terms Analogue to material optimization

Gene Absorption coe�cient of a

material for a speci�c band.

Chromosome Set of genes (materials) that

characterize an individual.

Individual A candidate solution that

consists of a list of genes (materials)

(associated to a chromosome).

Population Ensemble of Individuals - all di�erent

material combinations for one generation.

Generation A stage in the evolution process

corresponding to a population.

Evolution Process of obtaining new sets of

materials.

Target Measured acoustic parameters.

Fitness The error between simulated

and measured data for an individual.

Should be minimized.

Fitness Calculation of �tness according

function to equation 1.

simulated impulse responses match against the mea-
sured ones. However, there is bound to be di�erences
between them as neither measurements nor simula-
tions are perfect [7]. Instead, we have chosen to com-
pare how well some of the room acoustic parameters
match - as these are supposed to be good measures
for important attributes of the acoustics in a room.
Indeed, the room acoustic parameters are one of the
most important tools for the room acoustician. In or-
der to evaluate the �tness of a set of materials, point
responses for a number of source-receiver pairs are
simulated and the average deviation of a number of
room acoustic parameters is calculated. The param-
eters are normalized to their JND (Just Noticeable
Di�erence)[4] (e.g. 5% for reverberation time and 1
dB for C80) so it is possible to merge di�erent param-
eters into one �tness number. If the di�erence between
measured and simulated parameter is less than 1 JND
- e.g. less than 1 dB for C80 - this is fairly accurate as
it is not possible for the human receiver to perceive
the di�erence subjectively. The �tness function used
is given by the following formula:

ε[JND] =

K∑
k=1

I∑
i=1

|[Parki ]Sim − [Parki ]Meas|

K · I
,(1)

where ε is the �tness value (error between simulated
and measured value), and [Parki ]Sim, [Par

k
i ]Meas rep-

resent the simulated and measured acoustic parame-
ter i for the source-receiver combination k. K is the
total number of source-receiver combinations, while I
is the total number of used acoustic parameters.

2.2. Search Space

In order to optimize the search process it is impor-
tant to limit the search space. The search space can
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Figure 1. Graph in the ODEON utility displaying the 50%
search range for a material having absorption coe�cients
linearly from 0 at 63 Hz to 1 at 8000 Hz.

be limited by telling the GA that some of the absorp-
tion coe�cients should only vary within certain limits
and indeed that some should not be changed at all.
This variation can be called search range and is given
in percentage. A value of 100% would lead to a search
range from 0 to 1 absorption coe�cient, regardlesss
the initial values. A value of 0% leads to no change at
all, meaning that the material is exlculded from the
optimization process. A search range between 0 and
100% gives lower and upper limits depending on the
initial ansorption coe�cient. Figure 1 shows an ex-
ample of limits for 50% range. Careful estimation of
the search range is crucial for achieving realistic so-
lutions. For example if it is suspected that two hard
parallel walls may cause a �utter echo once extra ab-
sorption is installed in the refurbished room, then it is
important to restrict the absorption coe�cients and
search range to low values e.g. maximum 2%. If a ma-
terial is only installed on a small surface area or it
is believed to be well known it should be assigned a
search range of 0%. Omitting some materials from the
optimization process will reduce the calculation time
as the number of individuals has a linear in�uence on
it. By limiting the range of absorption coe�cients the
search process also becomes more e�cient as the GA
will only search where there are possible valid solu-
tions - e.g. if it is known that there is mineral wool
in the ceiling, the GA should not specify absorption
corresponding to wooden �oor and vice versa. This
will not only make the search faster, but it will also
prevent unrealistic solutions which match the target
well but they are obviously wrong (wooden �oor on
the ceiling and mineral wool on the �oor). It is rec-
ommended that the user initially assigns materials as
realistic as possible. In the ODEON calibration utility
it is possible to assign a search range between 0 and
100% to each material.

2.3. Genetic Algorithm parameters

Apart from the �tness function and the search range
described in sections 2.1 and 2.2 respectively, a num-

ber of evolution parameters have to be set, which af-
fect the e�ciency and accuracy of the GA.

The selection method determines the way individu-
als are selected from the current generation to produce
children of the next generation. Four of the most com-
mon selection methods are Roulette, Random, Tour-
nament and Elitist. According to the Roulette selec-
tion method, parents are selected based on a roulette-
wheel. The parents with the best �tness are assigned
a bigger portion on the wheel and hence they are more
likely to be chosen. This portion-based approach can
lead to small variance in �tness and low selective pres-
sure [5]. A widely used solution to the problem is to
rank the �tness values and assign the roulette por-
tions according to the rank number. In the Random

method parents are selected completely randomly. In
the Tournament method a few individuals are selected
randomly from the whole population and only the
best are kept. This is repeated several times until a
speci�ed number of the best individuals is collected.
With the Elitist method the top n percent of the pop-
ulation is chosen and re-chosen. In the present ab-
sorption coe�cient optimization algorithm the Elitist
method has been used, which seems to provide mean-
ingful results faster than the other methods. At the
end of each generation the best 50 % of the parents
are chosen to make new children.

The population of individuals, which is presented in
Tab.I, is also an important parameter that a�ects the
speed of the algorithm and the convergence. Values
that are multiples of the number of materials can be
used. It has been found that for our speci�c problem
4 individuals per material is a reasonable number.

In the ODEON optimization utility the user can de-
�ne the probabilities of three genetic operators which
control the way chromosomes from parents are com-
bined to derive children of the next generation. Data
inside the GA are represented in binary mode. This
means that absorption coe�cients are encoded into
strings of bits (0 and 1) with varying accuracy, deter-
mined by the number of bits in the strings. For the
present paper strings of 16 bits were used. The way
absorption coe�cients (real numbers) are represented
in binary mode makes the application of the genetic
operators more straightforward. The crossover oper-
ator determines which portions of two parents will be
combined to create two new o�spring. The inversion

operator reverses a segment of a chromosome. Finally
the mutation operator mutates the state of a bit (be-
tween 0 and 1 values). The most common value for
the mutation probability is 1 divided by the string
length, which means that only one bit from the string
is allowed to change state [5].

Figure 2 shows the basic structure of the proposed
GA optimization method summing up the elements
presented in section 2.
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Figure 2. Flow chart of the proposed GA optimization method. A su�cient population is needed for the algorithm to
�nd a solution. The population is de�ned by N individuals per material, so that the total number of individuals in the
population is N ×M .

3. Application to a case

The optimization method proposed in this paper was
applied for calibrating the materials in a model of Au-
ditorium 21 at the Technical University of Denmark
(DTU), which is shown in Figure 3. The room was
also used as example in [7]. The initial assignment
of materials is listed in table II. There are 11 di�er-
ent materials and most of them have been selected as
from the standard material library of ODEON. The
back wall which is some kind of resonator panel with
unknown resonance frequency and ceiling was set to
60% absorption for all frequencies. It was not possible
to inspect the ceiling material so an initial estimate
was 2 x 13 mm gypsum board with mineral wool back.

The �tness was calculated as an average over 10
source- receiver pairs (2 sources and 5 receivers), ac-
cording to equation 1. Initially, materials were op-
timized taking into account only the reverberation
time T30, which is an acoustic parameter that gives
a good overlook of the decay process in the room. Af-
terwards the same optimization was carried out for
seven room acoustic parameters: EDT , T15, T20, T30,
TS , C50 and C80 which have a high degree of comple-
mentarity among them. For example, typically as T30
increases, C80 decreases and vice versa. This makes
the GA �tting process more di�cult in an attempt to
balance counter forces.

3.1. Matching only one parameter

Reverberation time T30 was chosen in this case as
the unique target acoustic parameter. Equation 1
was used to for calculating the average error (�tness)
between measured and simulated values for the ten
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Figure 3. The Auditorium 21 at the Technical University
of Denmark (DTU), as it looks inside ODEON, with two
sources (in red) and �ve receivers (in blue).

source-receiver pairs. For each material 4 individuals
have been used, which leads to a population of 44
individuals. In Figure 4 the convergence process of
the GA is shown. The search range was set to 100%
for all materials, allowing no constrains during the
search proccess. This means that the algorithm has a
broad range to search for the best solution, leading to
a greater chance of �nding an individual that mini-
mizes the error in equation 1 than when using smaller
ranges.

At the end of the random (Monte Carlo) round (0th

generation) the �tness values are very high for most of
the frequencies. During the next generations the val-
ues decline dramatically until a very satisfying conver-
gence is achieved at around 9th and 10th generations.
Apart from the lowest two octave bands all other �t-
nesses remain well below 1 JND.
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Table II. Initial choice of materials in the model of Auditorium 21. For each material, the octave-band dependent
absorption coe�cients are given together with the area occupied by the material.

Frequency (Hz)

Material 63 125 250 500 1000 2000 4000 8000 Area (m2)

80% �at absorption - strips on ceiling 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 13.8

Plasterboard 13mm on frame - ceiling 0.300 0.300 0.120 0.080 0.060 0.060 0.050 0.050 217.1

Smooth concrete, painted - �oor 0.010 0.010 0.010 0.010 0.020 0.020 0.020 0.020 24.5

16-22 cm wood facing - wall 0.250 0.250 0.150 0.100 0.090 0.080 0.070 0.070 236.6

Wooden �oor on joists 0.150 0.150 0.110 0.100 0.070 0.060 0.070 0.070 187.6

Solid wooden door 0.140 0.140 0.100 0.060 0.080 0.100 0.100 0.100 23.8

30 % �at absorption - wall 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 7.4

Double glazing - windows 0.100 0.100 0.070 0.050 0.030 0.020 0.020 0.020 46.1

Wooden table - audience tables 0.020 0.030 0.040 0.050 0.070 0.080 0.080 0.090 100.8

Smooth unpainted concrete - blackboard 0.010 0.010 0.010 0.020 0.020 0.020 0.050 0.050 25.0

60% �at absorption - backwall 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 54.9

 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8 9 10

Fi
tn

es
s 

in
 J

N
D

 

Generation 

63 Hz

125 Hz

250 Hz

500 Hz

1000 Hz

2000 Hz

4000 Hz

8000 Hz

Figure 4. Best �tness value in JND at the end of each gen-
eration. Absorption coe�cients in this case are assigned a
100 % search range.

3.2. Matching seven acoustic parameters

Now equation 1 is applied for seven parameters: EDT ,
T15, T20, T30, TS , C50 and C80. Initially the search
range was set to 100% for all the materials. Figure 5
shows the average �tness for each octave band before
the calibration process, along with the best �tness as
they converged after ruuning the calibration method
for 10 generations. It is clearly seen that the method
was able to provide a very satisfying solution in terms
of average �tness value, but the individual absorption
coe�cients did not lead to realistic materials in most
of the cases.

In the next step the ceiling material and the back-
wall material were given a search range of 80% and all
of the rest materials were assigned a search range of
50%. Limiting the search range to 50% ensures that
no matter the changes, the shape of the frequency-
dependent absorption coe�cient remains the same
and closer to reality. It is worth mentioning that the
narrower the search range, the less generations it takes
for the algorithm to converge to a solution. This time
8 generations were used. The optimized absorption
coe�cients with this approach are given in table III.
In principle when the octave band absorption coe�-

Figure 5. Best �tness values, together with the original
�tnesses corresponding to table II. The best �tnesses were
derived by running the optimization algorithm for 10 gen-
erations with a search range of 100%. The �tness is an
average from 10 source-receiver pairs and 7 parameters,
using equation 1.

cients of a material change the name should change
too, as the optimized material can be signi�cantly dif-
ferent from the original material. However, since we
can treat this process as a �ne tuning of the existing
materials we have chosen to keep the original names
as references for the optimized ones.

In Figure 6 the average error for each octave band is
shown before the calibration process along with the er-
rors after. As can be seen, the error has been reduced
signi�cantly for all octave bands; for the bands 500 -
8000 Hz the error is close to or well below 1 JND. For
the octaves, 63 - 250 Hz the error is more signi�cant,
almost 5 JND at 63 Hz. However, if inspecting the dif-
ferences between measured and simulated parameters
at those frequencies it turns out that, although the
variation with position is not caught accurately, the
parameters averaged over positions match fairly well
for some parameters. It therefore seems that smaller
error number at the lowest octaves cannot be achieved
because the energy based simulation in ODEON does
not include phase information and modal behavior,
which might be present in the real room. This is in-
deed con�rmed when comparing the measured and
simulated decay curves at 63 or 125 Hz (see Figure 8
or 10).



Estimating absorption coefficients using a genetic algorithmFORUM ACUSTICUM 2014
7-12 September, Krakow

Table III. Optimized materials in the model of Auditorium 21. For each material, the octave-band dependent absorption
coe�cients are given together with the area occupied by the material.

Frequency (Hz)

Material 63 125 250 500 1000 2000 4000 8000 Area (m2)

80% �at absorption - strips on ceiling 0.719 0.850 0.766 0.703 0.848 0.767 0.756 0.829 13.8

Plasterboard 13mm on frame - ceiling 0.580 0.573 0.297 0.057 0.125 0.117 0.198 0.190 217.1

Smooth concrete, painted - �oor 0.028 0.018 0.014 0.019 0.035 0.041 0.040 0.036 24.5

16-22 cm wood facing - wall 0.142 0.244 0.150 0.093 0.078 0.099 0.086 0.097 236.6

Wooden �oor on joists 0.214 0.225 0.137 0.152 0.063 0.032 0.075 0.114 187.6

Solid wooden door 0.158 0.117 0.113 0.033 0.068 0.054 0.114 0.063 23.8

30 % �at absorption - wall 0.386 0.356 0.341 0.405 0.398 0.240 0.211 0.272 7.4

Double glazing - windows 0.088 0.083 0.058 0.078 0.044 0.017 0.036 0.014 46.1

Wooden table - audience tables 0.042 0.055 0.060 0.084 0.068 0.124 0.126 0.144 100.8

Smooth unpainted concrete - blackboard 0.027 0.008 0.014 0.030 0.018 0.011 0.084 0.071 25.0

60% �at absorption - backwall 0.264 0.408 0.656 0.516 0.273 0.258 0.272 0.365 54.9

Figure 6. Best �tness values corresponding to the opti-
mized absorption coe�cients of table III, along with the
original �tnesses corresponding to the absorption coe�-
cients of table II. The best �tnesses were derived by run-
ning the optimization algorithm for 8 generations. The
�tness is an average from 10 source-receiver pairs and 6
parameters, using equation 1.

Figures 7 to 10 illustrate some examples of simu-
lated and measured acoustic parameters before and
after the material calibration process. The graphs are
taken directly from the Multi-point Response display
in ODEON [2]. On the left side of the display the re-
sults for all receivers at a speci�c band are shown,
while the right-side graph presents the results for all
bands at a particular receiver position. Among the nu-
merous combinations of Multi-point Response graphs
we have chosen to include some representative ones,
that show a large initial error between the simulated
and measured values. The correction of EDT in Fig-
ure 7 has been very satisfying, despite the fact that
EDT is a very sensitive parameter, highly a�ected
by the �uctuations of the initial part of the impulse
response. The matching of T30 (Figure 8) is quiet suc-
cessful for all frequencies except from 63 Hz, probably
due to the low frequency limitations of the software,
mentioned above. The results for TS are shown in Fig-
ure 9 for all receivers at 250 Hz and for receiver 5 at
all bands. The agreement after the optimization pro-
cess is very good for all bands at receiver 5, even at
the lowest ones. Moreover the values at all receivers
have been improved signi�cantly at 250 Hz, which can

be considered a low band. Finally, a C80 graph is dis-
played in Figure 10. A low octave band (125 Hz) has
been chosen for displaying the results at all receivers.
On average the agreement is better after the calibra-
tion although some noticeable deviations remain at
some positions. In general the results have been im-
proved for all bands of receiver 1.

4. Computational performance

In our setup we used 2 source and 5 receiver positions.
11 materials were calibrated. 4 Individuals were used
per material, leading to 44 individuals in the popu-
lation of each generation. The calibration seemed to
stabilize after the 8th generation for the second round
of calculations in section 3.2. To carry out the above
calibration required 2 x 5 x 11 x 4 x (8+1)=3960
point response calculations. So it is obvious that a
point response calculation needs to be fast to provide
solutions within practical time. On the other hand, if
simulation parameters - such as number of rays - are
not de�ned carefully in order to achieve realistic re-
sults, then the calibration may not make much sense.
The calibration procedure including all 3960 point re-
sponse calculations and using 2000 late rays [2] took
about 30 minutes on an Intel CoreTM i7 CPU, run-
ning at clock speed of 3.4 GHz (utilizing 4 cores). Thus
we do consider the calibration utility in ODEON fast
enough to be a useful tool.

5. CONCLUSIONS

A utility that allows matching materials in a digi-
tal room acoustic model against the real room has
been implemented inside the room acoustics program
ODEON. The utility, which is based on Genetic Al-
gorithms (GA), allows optimizing multiple materials
in the same model and is capable of signi�cantly re-
ducing the deviation between measured and simulated
acoustic parameters over a number of source-receiver
pairs. An application of the method to an existing
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Figure 7. Early Decay Time, EDT , as shown in ODEON for 5 Receivers at 4000 Hz and for Receiver 2 at all bands.
Upper graph: Simulated versus Measured before calibration. Lower graph: Simulated versus Measured after calibration.

 

 

Figure 8. Reverberation Time, T30, as shown in ODEON for 5 Receivers at 250 Hz and for Receiver 3 at all bands. Upper
graph: Simulated versus Measured before calibration. Lower graph: Simulated versus Measured after calibration.
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Figure 9. Center Time, TS , as shown in ODEON for 5 Receivers at 250 Hz and for Receiver 5 at all bands. Upper graph:
Simulated versus Measured before calibration. Lower graph: Simulated versus Measured after calibration.

 

 

Figure 10. Clarity, C80, as shown in ODEON for 5 Receivers at 125 Hz and for Receiver 1 at all bands. Upper graph:
Simulated versus Measured before calibration. Lower graph: Simulated versus Measured after calibration.
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auditorium was presented. The algorithm performed
very satisfactory. For all eight octave bands the av-
erage error is reduced signi�cantly (from 6.3 JND's
to 1.4 JND's at 250 Hz) and for the 500 - 8000 Hz
bands the resulting error is equal to or below 1 JND,
which is quiet satisfactory. For the low octave bands
63 - 125 Hz the optimization is also signi�cant but the
error remains important, probably because modes of
waves are not included in the energy based simulation
model. Another possible explanation may be the fre-
quency dependent scattering coe�cients assigned to
the surfaces. In the present work �xed scattering co-
e�cients were used in the model, varying from 0.05
to 0.3. However in a future work the scattering coe�-
cients could be optimized in same way as the absorp-
tion coe�cients. It has been found that it is important
to apply realistic search ranges for each absorption
material, in order to get realistic optimized solutions.
The utility includes tools that make it easy to specify
search ranges for each material.
The method suggested in this paper can also be

used to optimize materials towards a speci�ed theo-
retical target. For example, one could try to search for
the best combination of materials that give certain re-
verberation time and clarity in a room. In such a case
the term [Parki ]Meas in equation 1 can be replaced by
[Parki ]Target. Still correct estimation of initial mate-
rials and search ranges is important to encourage an
e�ective convergence.
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