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ABSTRACT
The reverberation chamber method to measure a material’s absorption coefficient has known limitations. In
particular, the measured value can exceed unity, due to the finite size of the studied sample, which creates edge
diffraction effects. These are not accounted for in classical theories of absorption. A revised theoretical approach
is proposed to evaluate the absorption of sound by a finite-sized absorber flush-mounted in an infinite rigid baffle.
The absorption, reflection and transmission of sound through the sample are governed by the material’s surface
impedance (dissipation of energy) and the sample’s radiation impedance, which depends on its geometry. The
maximum possible absorption is achieved in an “open-window” configuration, in which sound passes freely
through an aperture of the same dimensions as the sample. In that case, the absorbed sound comprises entirely
of the sound transmitted to the other side of the baffle. For an open window, the absorption coefficient drops at
low frequencies and at large incidence angles, due to edge diffraction. Therefore, we propose to compare sound
absorption by a given sample to the corresponding open-window configuration. Comparisons with experimental
data show that the revised theory makes it possible to better predict the absorption coefficient measured in a
reverberation chamber.
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1 INTRODUCTION
The absorption coefficient of materials is a central aspect of room acoustic predictions, as it constitutes essential
input data to acoustic models. A common way of measuring it is the reverberation chamber method (ISO 354)
[1], which characterizes absorber samples under diffuse field incidence. However, many uncertainties have been
identified in this method, including lack of diffuseness, finite size effects and poor reproducibility between
laboratories [2].

In particular, the finiteness of the sample under test can lead to absorption coefficient values above 1, due
to additional diffraction effects at the edges. ISO 354 recommends a test sample size between 10 and 12 m2

in order to mitigate the problem, but even with such sizes, edge diffraction is still present and the absorption
coefficient can still be above 1. In terms of theoretical calculation, this is explained with a statistical absorption
coefficient, in which the incident power on the surface is calculated under an infinite size assumption. However,
it is not clear whether such a calculated coefficient corresponds exactly to the measured data in a reverber-
ation chamber. In room acoustic applications, e.g. in simulations, it is common to truncate such absorption
coefficients to 1, which is a very coarse approach.

The absorption by finite-sized samples has been extensively studied. For instance, assuming that the absorber
is flush-mounted in a rigid baffle, Thomasson defined a corrected absorption coefficient, in which the incident
power is replaced by the available power [3]. As a result, Thomasson’s coefficient cannot exceed 1. However,
the case of maximum absorption proposed by Thomasson is unrealistic, because it requires a surface impedance
equal to the complex conjugate of the radiation impedance at all angles. It is common to rely on a variational
approach to characterize the sound field at the absorber surface, which results in an analogous electrical circuit
[4].



Figure 1. Reflection of a plane wave at oblique incidence on a finite-sized absorber flushed in a rigid backing.
Left: sketch of the setup. Right: electrical analogue circuit.

In this paper, a revised theory for the absorption of finite samples is proposed, in which the absorber is
compared to an ideal absorption case, corresponding to an open window of the same size of the absorber. Using
such a reference for absorption was actually Sabine’s original idea, as presented in his paper on reverberation
([6], p. 23-24).

2 THEORY
2.1 Setup and known equations
Figure 1 shows the studied setup. We assume a rectangular absorber of finite surface area S flush-mounted in an
infinite rigid baffle. The sample is subject to an incident plane wave of amplitude pi, impinging at an incidence
angle θ . This results in a reflected wave of amplitude pr, which is not a plane wave, unless the surface is
infinite. The setup is commonly represented as an analogous electrical circuit, also shown in Figure 1. The
analogy is valid under the assumption that the pressure over the surface behaves the same as the projection of
the incident wave on the surface [4].

The quantities included in the model are the reflected pressure amplitude pr, the air impedance ρc, the
sample’s surface impedance Za and its radiation impedance Zr. In this paper, the impedances Za and Zr are
normalized to the air impedance ρc. In the analogy, the driving voltage is 2pi and it corresponds to the sound
pressure in front of the baffle only (without the absorber). The pressures are expressed at the surface of the
absorber. The surface impedance is related to the absorption of sound by the specimen, and can be expressed
from the sound field quantities as

Za =
pi + pr

ρcv
. (1)

The radiation impedance represents the effect of the absorber’s size. It is expressed as follows,

Zr =
pi − pr

ρcv
. (2)

The radiation impedance can be expressed as a quadruple integral equation depending on the absorber dimen-
sions, but we make use of an approximation for easier implementation [5]. Zr depends both on frequency and
incidence angle.

For larger samples,

Zr ≈
1

cos(θ)
. (3)

This asymptotic value, which is a real number, corresponds to the radiation impedance of an infinite plane. The
approximation is valid when the Helmholtz number ke is much larger than 1 (k being the wavenumber and e
being related to the absorber’s surface area by e = 1/2

√
S).



From this model, it is possible to study various relevant quantities. The complex reflection factor is ex-
pressed as

R(θ) =
pr

pi
=

Za −Z∗
r

Za +Zr
. (4)

The angle-dependent absorption coefficient is

α(θ) = 1−|R(θ)|2 = 4Re(Za)Re(Zr)

|Za +Zr|2
. (5)

The incident power on the surface can be expressed as a function of the radiation impedance,

Pinc =
1
2
|pi|2

ρc
S

1
Re(Zr)

=
P0

Re(Zr)
, (6)

where P0 is a reference sound power quantity. When ke >> 1, a common approximation is to estimate the
incident power as the projected power of the incident wave on the absorber’s surface. This approximation is
extensively used in the field of geometrical acoustics. In that case, the incident power becomes

Pinc,∞ =
1
2
|pi|2

ρc
Scos(θ) = P0 cos(θ). (7)

Pinc,∞ corresponds to the incident power expressed in Eq. (6), using the approximation of Eq. (3) for Zr. At
normal incidence (θ = 0°), we have Pinc,∞ = P0. Therefore, P0 corresponds to the incident sound power of a
plane wave at normal incidence when disregarding finite-size effects. With Eq. (7), the incident power becomes
zero at grazing incidence (θ = 90°), which is not the case in reality. The absorbed power is found in the
electrical circuit at the terminals of the Za impedance,

Pabs = 4P0
Re(Za)

|Za +Zr|2
. (8)

In a diffuse sound field, the incident power and the absorbed power must be integrated over the incidence angle.
A random incidence absorption coefficient is then obtained,

αrand =
Πabs

Πinc
=

∫ π
2

0
4Re(Za)
|Za+Zr |2

sin(θ)dθ∫ π
2

0
1

Re(Zr)
sin(θ)dθ

. (9)

Note that the problem is assumed to be independent of the azimuth angle for simplification. In general, Za is
also angle-dependent, except if local reaction is assumed. αrand is bounded between 0 and 1.

In geometrical acoustics, Pinc,∞ from Eq. (7) is used instead of Pinc from Eq. (6). With this definition of
incident power, a statistical absorption coefficient is obtained,

αstat =
∫ π

2

0

8Re(Za)

|Za +Zr|2
sin(θ)dθ . (10)

αstat corresponds to the coefficient measured in a reverberation chamber and can reach values higher than 1.
However, it does not always match with measured absorption data. αrand and αstat are related by a factor
depending on Zr, as pointed out by Thomasson [3],

αrand =
αstat

2
∫ π

2
0

1
Re(Zr)

sin(θ)dθ

. (11)



2.2 Case of maximum absorption
The maximum absorption scenario occurs when sound can travel freely through the absorber. In that regard,
this case corresponds to an “open window” situation, in which the absorber is replaced by an aperture of the
same dimensions and through which sound radiates behind the baffle. If we assume that the air properties are
the same behind the baffle, this scenario corresponds to replacing Za by Zr in the analogous circuit of Figure 1
in order to represent sound radiation behind the baffle.

Using Eq. (4), the reflection factor becomes

R(θ) = j
Im(Zr)

Zr
(12)

and the angle-dependent absorption coefficient from Eq. (5) is then

α(θ) =
Re(Zr)

2

|Zr|2
. (13)
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Figure 2. Angle-dependent absorption coefficient of an open window of dimensions 2 m by 2 m.

For illustration, Figure 2 shows the absorption coefficient of an open window of dimensions 2 m by 2 m as
a function of frequency, for different angles of incidence. For small angles (0°, 30°), the absorption coefficient
increases with frequency, until it reaches 1. This illustrates that at high frequency and close to normal incidence,
the open window is totally transparent, and there are no prominent edge effects. At larger angles, α does not
increase as much with frequency, which shows more important contribution from the edges. At 90° incidence,
α only reaches 0.5, so at high frequencies, half of the power is transmitted through the window, while the other
half keeps propagating in front. ISO 354 recommends much larger surface areas (10-12 m2) [1], but even with
such larger sizes, the absorption coefficient of the open window is below 1 for large angles of incidence, and
the 90° case still converges towards 0.5 at high frequencies. This will influence sound absorption measurements,
as they are obtained under a diffuse sound field, in which all angles are represented.

The aperture case was already proposed as a reference for absorption by Sabine [6]. This section illustrates
that this reference definitely does not correspond to full absorption. The residual absorption is due to wave
effects, which are prominent at low frequencies and at grazing incidence, as shown in Figure 2. Edge diffraction
corresponds to reflection at the edges. It leads to more power being reflected, which reduces the absorption
coefficient. In addition, a refraction effect occurs, leading to the bending of the incident wave towards the
aperture and an increase of the absorption coefficient. This is why at 90° incidence, the absorption coefficient
is not equal to 0.



2.3 Revised absorption coefficient
The proposed revised theory of absorption is based on the statement that sound absorption cannot exceed that of
an aperture of the same size. Following this statement, traditional absorption coefficients are scaled by a factor
M(θ), corresponding to the ratio of sound power through the window to the incident power, i.e. the absorption
coefficient derived in Eq. (13),

M(θ) =
Pwindow

Pinc
=

Re(Zr)
2

|Zr|2
. (14)

The scaling corresponds to including reflection from the surroundings of the sample, which are missing in the
analogous circuit approach.

We then define the following absorption coefficients using the scaling factor M(θ), in particular an angle-
dependent absorption coefficient, based on Eq. (5),

αrevised(θ) = M(θ) ·α(θ), (15)

and a statistical absorption coefficient, based on Eq. (10),

αstat,revised =
∫ π

2

0

8Re(Za)

|Za +Zr|2
M(θ)sin(θ)dθ . (16)

3 EXAMPLES
3.1 Numerical example
We consider an absorber composed of a membrane, a porous layer and a cavity on a rigid backing. We assume
the sample’s dimensions are 2 m by 2 m. The configuration is modeled with the transfer matrix method in order
to derive its surface impedance, using ODEON’s material calculator [7]. The material is characterized by an
absorption peak at about 200 Hz.
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Figure 3. Angle-dependent absorption coefficients at 0° and 85° incidence. Comparison of the open window
configuration Eq. (13) (blue), the infinite sample case Eq. (5) with Zr from Eq. (3) (red), the original absorption
coefficient for a finite sample Eq. (5) (gray) and the revised absorption coefficient Eq. (15) (yellow).

Figure 3 compares the original and the revised angle-dependent absorption coefficients, from Eq. (5) and
Eq. (15) respectively, at 0° and 85°, together with the open window absorption coefficient (Eq. (13)) and the
absorption coefficient for an infinite sample of the same material (using Zr from Eq. (3)). At 0°, the infinite case
and the traditional absorption coefficient are very similar on the whole frequency range. The open window curve
shows that the revised theory will lead to a small reduction in the absorption coefficient at lower frequencies,
below 500 Hz. This is visible in the revised curve, especially at the peak location. The maximum value is 0.93,
compared to 0.99 for the traditional α . More drastic differences are observed at 85°, where the traditional α is
much higher than the infinite case at the absorption peak. Indeed, a high α requires Za ≈ Z∗

r , but this is not
possible for an infinite sample, for which Zr is purely real while Za has a non-zero imaginary part. The open



window case approaches a value of about 0.5, as discussed in Section 2.3, which then reduces the absorption
coefficient in the revised theory. According to Eq. (15), both the open window case and the traditional α

constitute upper limits to the revised absorption coefficient, as both the original α(θ) and M(θ) are smaller
than 1.
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Figure 4. Statistical absorption coefficient. Comparison of the infinite sample calculation (blue), the traditional
coefficient Eq. (10) (red) and the revised coefficient Eq. (16) (gray).

Figure 4 compares the traditional and the revised statistical absorption coefficients under diffuse incidence,
from Eq. (10) and Eq. (16) respectively, plotted together with the infinite sample case. The revised absorption
coefficient is found between α for the infinite sample and the traditional α . The revised theory tends to reduce
the absorption coefficient, especially at the peak location.

3.2 Experimental data
The revised theory is also tested with experimental data measured in a reverberation chamber, and taken from
Riionheimo et al. [8]. The studied configuration comprises of two 100 mm layers of porous material over a
rigid backing. The first layer on the backing is made of mineral wool (mass per unit area 30 kg/m2) and the
second layer on top is polyester fiber wool (mass per unit area 20 kg/m2). The dimensions of the sample are
3.9 m by 2.6 m.

The surface impedance and the radiation impedance of the configuration are derived with ODEON’s material
calculator, using a flow resistivity of 20 kN.s.m-4 for the mineral wool and 1750 N.s.m-4 for the polyester
wool. From these data, the statistical absorption coefficient, the random incidence absorption coefficient, and
the revised statistical absorption coefficient are derived, with Eqs. (10), (9) and (16), respectively.

Figure 5 shows these three calculated absorption coefficients together with the measured data from [8]. The
data is averaged in third-octave bands. The measured absorption coefficient is the closest to the revised co-
efficient. As observed in Sec. 3.1, the revised statistical absorption coefficient is again situated between the
traditional statistical coefficient and the random incidence absorption coefficient. In this example, the revised
absorption coefficient and the measured data reach values above 1, although not as high as the traditional statis-
tical coefficient. This case is a good example of the revised theory, because the absorption coefficient remains
high down to 100 Hz, so large differences are visible between the three calculated absorption coefficients.

4 DISCUSSION
The radiation impedance is an essential tool to include finiteness effect, and it has been used in several studies
already [3, 4]. In the present study, the radiation impedance is used not only to express the available power at
the absorber, like in [3], but it is also included in the incident power, through Eq. (6). The main novelty is to
compare the reflection process to that of an ideal open window case. The revised model thus includes reflection
from the edges, which was not present in the original model. One consequence is that the revised absorption
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Figure 5. Measured and calculation absorption coefficients in a reverberation chamber (diffuse field). Rigid
backing with 200 mm layer of polyester wool and mineral wool [8]. Statistical Eq. (10), Random incidence Eq.
(9) and Revised Eq. (16).

coefficient is lower than the original one. The difference is mostly visible at low frequencies and at grazing
incidence, where edge effects are more prominent.

It is known that a statistical absorption coefficient is insufficient input data to ensure fully accurate room
acoustic predictions. Common issues are the lack of phase information (α being an energy quantity), the lack of
angle-dependent data (it is determined at diffuse incidence) and the general lack of precision of the reverberation
chamber method. The proposed revised theory does not address the phase problem as it is based on power
considerations. Nevertheless, it still contributes to a better understanding of the reflection process over a finite
surface. Therefore, it can still be used to predict better input absorption data for numerical acoustic models.

The comparison with experimental data showed that the revised theory can yield a better estimate of mea-
sured absorption coefficients than the traditional statistical absorption coefficient. However, the comparison can
be challenging, because the measurement uncertainty can be larger than the difference between the calculated
coefficients.

5 CONCLUSION
A revised theory was proposed in order to better represent reflection of sound on finite-sized absorbers. The
proposed theory is based on an analogous circuit representation and assumes that absorption cannot exceed that
of an aperture of the same size. The idea of a reference aperture can be traced back to Sabine’s work on
absorption. This reference is however not fully absorptive. Therefore, the revised absorption coefficient is lower
than the traditional one, especially at low frequencies and grazing incidence. This difference is attributed to
additional reflections from the surroundings of the absorber.

According to initial comparison with experimental data, the revised statistical absorption coefficient is a good
candidate for predicting the measured absorption coefficient in a reverberation chamber (ISO 354). However,
further investigation is recommended in order to generalize the validity of the proposed coefficient. If the
agreement with reverberation chamber measurements is confirmed, the revised coefficient can be used to obtain
reliable input material data for numerical prediction models, such as geometrical room acoustics.

REFERENCES
[1] ISO 354. Acoustics - Measurement of sound absorption in a reverberation room. Geneva, 2003.

[2] Horoshenkov KV, et al. Reproducibility experiments on measuring acoustical properties of rigid-frame
porous media (round-robin tests). J. Acoust. Soc. Am. 2007; 122(1): 345-353.

[3] Thomasson S. On the absorption coefficient. Acustica 1980; 44: 265-273.



[4] Mechel, F. On sound absorption of finite-size absorbers in relation to their radiation impedance. J. Sound
Vib. 1989; 135(2): 225–262.

[5] Davy J, Larner D, Wareing R, Pearse J. The average specific forced radiation wave impedance of a finite
rectangular panel. J. Acoust. Soc. Am. 2014; 136(2): 525-536.

[6] Sabine, W. Reverberation. The American Architect and The Engineering Record. 1900. [reprinted as paper
No. 1 in Collected Papers on Acoustics (Harvard University Press. Cambridge. MA. 1923); reprinted by
Dover Publications Inc. (New York. 1964)].

[7] ODEON 17 User Manual. 2021. www.odeon.dk

[8] Riionheimo J, Näveri N, Lokki T, Möller, H. Sound absorption of slat structures for practical applications.
Proc Institute of Acoustics2018; 40(3).

www.odeon.dk

	Introduction
	Theory
	Setup and known equations
	Case of maximum absorption
	Revised absorption coefficient

	Examples
	Numerical example
	Experimental data

	Discussion
	Conclusion

