ODEON Workshop, Mariehamn, Åland, Finland, 2nd June 2004

ODEON and the scattering coefficient

Jens Holger Rindel

Specular and diffuse reflection

Reflection models (asymptotic models for short wavelengths)

Snell's law: $\theta_r = \theta_i$

Scattering as a weighted vector addition of specular and diffuse reflection

Small scattering, s = 0,2

High scattering, s = 0.8

Sound scattering coefficient, s

- defined as the ratio between the acoustic energy reflected in non-specular directions and the totally reflected acoustic energy
- A sound scattering surface is defined as a surface with s ≥ 0.5

One- and two-dimensional diffusers

а

Types of diffusers

- Geometric diffusers
 - Simple curved surfaces
 - Irregular geometric structures
 - Periodic geometric structures
 - Mixture of absorbing and reflecting materials

- Mathematical diffusers
 - MLS (Maximum Length Sequence) diffusers
 - QRD (Quadratic Residue Diffusers)
 - PRD (Primitive Root Diffusers)
 - Fractal diffusers
 - Curved diffusers

Convex and concave surfaces

В

Periodic geometric structure

Alternating absorbing and reflecting structure

QRD Quadratic Residue Diffuser

Measurement of the scattering coefficient

ISO/FDIS 17497 -1:

Acoustics – Sound scattering properties of surfaces – Part 1: Measurement of the random-incidence scattering coefficient in a reverberation room

Reverberation room

- The measurements may be done in full scale or in a physical scale model with the scale ratio 1:*N*
- The volume V of the reverberation room shall be minimum:

 $N^{-3} \cdot 200 \text{ m}^3 \leq V$

Set-up in a scale model for measurement of the scattering coefficient of a test specimen

Principle

- Impulse responses are measured for different orientations of a circular test specimen on a turntable
- The specular energy is extracted from the impulse response by phase-locked averaging
- The scattered sound is incoherent and is eliminated by averaging

Principle: Three impulse responses measured with rotating test specimen

Time (ms)

Impulse responses

Filtrerede impulsresponser. f_c =12.5 kHz. Målt i position R4S1 med periodiske lægter.

Decay curves

Position of test specimen

 Minimum distance from room boundaries:

 $e \ge N^{-1} \cdot 1,0 m$

• Diameter of turntable: $d \ge N^{-1} \cdot 3,0$ m

Plan of room

Test samples

Structural depth of test specimen

The structural depth *h* should be: $h \leq d/16$ where *d* is the diameter of the turntable

Absorption of test specimen

- Measuring accuracy decreases for samples with high absorption
- Sound scattering surfaces should generally be as reflective as possible
- The absorption coefficient should be $\alpha_{\rm s}$ < 0,50

Rotation of test specimen

• Number of coherent averages: *n*

 $60 \leq n \leq 120$

• Turn between measurements:

 $\Delta \varphi = 360^{\circ} / n$

 $3^{\circ} \leq \Delta \phi \leq 6^{\circ}$

• Preferred number of averages:

n = 72, Δ φ = 5°

Rotation of test specimen

- Continuous rotation may be used
- The total measuring time shall equal a multiple of the revolution time of the turntable
- As a minimum two source positions and three microphone positions shall be used

Presentation of results

Measurement results

s measured for 72 different start positions of the turntable

$\alpha_{\rm s}$ measured for 72 different start positions of the turntable

Some limitations in the ISO-method

- The absorption of the test sample should be low (< 0,5)
- The attenuation in the air may cause reduced accuracy at high frequencies
- The structural depth must be limited (< 1/16 diameter)
- Variation of the structure along the perimeter may cause values of s > 1

Summary of the ISO-method

- The measuring method is an extension of the traditional room-method for sound absorption
- A coherence technique is used to separate the specular reflection
- The measurements may be done in a scale model

Application of ODEON to Workplaces

J. Keränen, E. Airo, P. Olkinuora, V. Hongisto Acta Acustica, vol. 89 (2003) 863-874

The six rooms

Work place	Type of industry	Volume (m ³)	Surfaces in model	m/n	Number of rays
1	engineering works	49 000	78	1/14	3000
2	weaving factory	6 400	107	3/6	4600
3	engineering works	33 600	134	3/10	10000
4	engineering works	60 000	145	3/9	6000
5	electronics works/ office	13 100	68	1/14	2000
6	knitting factory	33 000	140	6/1	5000

Table I. General information about the workplaces and acoustical models (m= number of sources, n= number of measurement points).

Keränen et al. (2003)

Keränen et al. (2003)

Scattering Coefficients

Table III. Collection of the scattering coefficients (in ODEON) used in the acoustical models.

Scattering coefficient	Description of the surface
$\begin{array}{c} 0.1, \ldots, 0.19\\ 0.2, \ldots, 0.39\\ 0.4, \ldots, 0.59\\ 0.6, \ldots, 0.89\\ 0.9, \ldots, 1.00\end{array}$	large, plain surfaces large partially fitted surfaces small or fitted surfaces large densely fitted surfaces small densely fitted surfaces

Accuracy of Reverberation Time predictions

Accuracy of SPL and IL predictions

Accuracy of SPL predictions (Average of six rooms)

Keränen et al. (2003)

Example: Sound scattering walls

J.Y. Jeon, L. Zhu, K. Yoo: Miral Concert Hall: "Ceramic Palace" for sound scattering. Inter-Noise 2003, Proceedings p. 545 – 552.

1:10 scale reverberation chamber for measuring the scattering coefficient

Jeon et al. (2003)

Fig. 6 Miral concert hall floor plan

Fig. 7 Miral concert hall main section

Jeon et al. (2003)

Fig. 10 Reverberation time

Fig. 4 Ceramic box-diffuser model & Scattering coefficients of a ceramic diffuser model

Max. height: 20 cm Absorption coeff: $\alpha = 0.01 - 0.03$ Scattering coeff. s = 0.4 (500 Hz) - 0.8 (2000 Hz)

Fig 5. Finalized shapes of ceramic diffusers

Guide to scattering coefficients

The scattering coefficient *s* should be chosen from depth of the structure and from the width of the surface.

The suggested graphs may be used as a rough guide.

The higher of the two values should be used for *s*.

