

www.odeon.dk

Reverberation time in non-diffuse rooms

Jens Holger Rindel Odeon A/S

Contents

- 1. Theory: Mean free path and reverberation time
- 2. Reverberation in rooms with non-diffuse sound field example

1. Theory: Mean free path and reverberation time

A sound wave represented by a ray

Mean free path, 3D sound field: $l_m = 4V/S$

> *V* : Volume *S* : Surface area

Mean free path, 2D sound field: $l_m = \pi S_x/U$

> S_x : Area U: Perimeter

A sound wave represented by a ray

NB: It is assumed that all surfaces have the same absorption coefficient α_m

Energy of sound wave is reduced by (1- α_m) after each reflection Sound pressure after *n* reflections

$$p^{2}(t) = p_{0}^{2} \cdot (1 - \alpha_{m})^{n} = p_{0}^{2} \cdot e^{n \cdot \ln(1 - \alpha_{m})}$$

Total path: $\sum_{i} l_{i} = c \cdot t = n \cdot l_{m}$ $p^{2}(t) = p_{0}^{2} \cdot e^{\frac{c}{l_{m}} \cdot \ln(1 - \alpha_{m}) \cdot t}$
RevTime - 60 dB decay: $t = T_{60} \implies p^{2}(t) = p_{0}^{2} \cdot 10^{-6} \implies$

$$10^{-6} = \mathrm{e}^{\frac{c}{l_m} \cdot \ln(1 - \alpha_m) \cdot T_{60}} \implies -6 \cdot \ln(10) = \frac{c}{l_m} \cdot \ln(1 - \alpha_m) \cdot T_{60}$$

General equation for reverberation time

$$T_{60} = \frac{13.8 \cdot l_m}{-c \cdot \ln(1 - \alpha_m)} \approx \frac{13.8 \cdot l_m}{c \cdot \alpha_m}$$

c: Speed of sound

DOM ACOUSTICS SOFTWARE

Reverberation time equations

Gener	ral: T_{60}	$= \frac{13.8 \cdot l_m}{-c \cdot \ln(1 - \alpha_m)}$	$\approx \frac{13.8 \cdot l_m}{c \cdot \alpha_m}$
3D:	$l_m = \frac{4 V}{S}$	$\frac{55.3 \cdot V}{-c \cdot S \cdot \ln(1-\alpha_m)}$	$\frac{55.3 \cdot V}{c \cdot S \cdot \alpha_m}$
2D:	$l_m = \frac{\pi S_x}{U}$	$\frac{43.4 \cdot S_x}{-c \cdot U \cdot \ln(1 - \alpha_m)}$	$\frac{43.4 \cdot S_x}{c \cdot U \cdot \alpha_m}$
1D:	$l_m = l_x$	$\frac{13.8 \cdot l_x}{-c \cdot \ln(1 - \alpha_m)}$	$\frac{13.8 \cdot l_x}{c \cdot \alpha_m}$

Eyring and Sabine equations (3D)

Special case for 3D diffuse field

7

Eyring:

OM ACOUSTICS SOFTWAR

$$T_{60} = \frac{55.3 \cdot V}{-c \cdot S \cdot \ln(1 - \alpha_m)}$$

More correct for very high absorption, $\alpha_m \rightarrow 1$

Sabine:

$$T_{60} = \frac{55.3 \cdot V}{c \cdot S \cdot \alpha_m}$$

Approximately the same as Eyring for $\alpha_m < 0.3$

2. Reverberation time in non-diffuse rooms – example

Example: Rectangular room

Uneven distribution of absorption – the preconditions for the reverberation equations of Sabine and Eyring are violated

Results according to theory

Direction	<i>I_m</i> (m)	$lpha_m$	<i>T₆₀</i> (s)
3-dim. (Sabine)	5.7	0.30	0.76
3-dim. (Eyring)	5.7	0.30	0.63
2-dim. (horizontal)	10.5	0.10	4.21
1-dim. (length)	20	0.10	8.02
1-dim. (width)	10	0.10	4.01
1-dim. (height)	5	0.45	0.45

- I_m : Mean free path
- α_m : Mean absorption coefficient
- T_{60} : Reverberation time

The scattering coefficient, s

ROOM ACOUSTICS SOFTWARE

Simulation with ray tracing

Simulation with ray tracing

Simulation with ray tracing

ROOM ACOUSTICS SOFTWARE

Simulation with ray tracing

Conclusion

- 1-D and 2-D sound fields have longer RT and 3-D sound fields have shorter RT (due to different mean free path)
- The classical equations for reverberation time are based on 3-D sound field and even distribution of absorption
- With uneven distribution of absorption the degree of scattering is most important (RT varies from 1.7 s to 0.7 s in one example)
- The decay curve is not a straight line in case of low scattering and uneven distribution of absorption, i.e. different results for different evaluation range (20 dB or 30 dB)