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The room dimensions are important for the frequency distribution of the normal modes of the room. The 
influence of the dimension ratio is analysed in box-shaped rooms with volume between 25 m3 and 300 
m3. Three different criteria have been applied to evaluate whether the frequency distribution is 
favourable; a smooth frequency response, the variance of the interval between modal frequencies, or the 
number of tones in the musical scale, supported by at least one of the room modes. Clearly, a square room 
or a cubic room are unfavourable and should be avoided as a music room. The results of the applied 
methods agree that there are three usable optimum dimension ratios, which have also been reported 
previously in the literature. The optimum ratios are (1:1.2:1.45), (1:1.4:1.89), and (1:1.48:2.12). However, 
it is also clear that nearly optimum dimension ratios are found within a certain range around each 
optimum. The analysis leads to a practical method for choosing favourable room dimensions in a music 
room.  

1 Introduction 

Singing or playing a musical instrument in a room is greatly affected by the acoustics of the room. We can say that the 
room gives support to the sound. In fact, the room behaves acoustically as an extension of the musical instrument. This 
is not only a matter of reverberation time and volume, but also concerns the frequency distribution of the room modes. 
The latter is particularly important in small rooms like music practice rooms and rehearsal rooms for small ensembles. 
In a small room, there are not many room modes in the low frequency range and the room support can be very unequal 
for the different musical tones. Thus, this study is restricted to box-shaped rooms with volumes between 25 m3 and 300 
m3. 

Musical instruments have been developed and improved over centuries and crafted to produce sound of high quality 
over the entire tonal range of the instrument. One of the challenges of the instrument makers has been to obtain equal 
tone quality for every semitone. Therefore, the extension of the instrument (the room) should also be designed with the 
best possible acoustical quality. 

As early as 1900, Sabine [1] commented on the question of room dimension ratios: “Thus the most definite and often 
repeated statements are such as the following, that the dimensions of a room should be in the ratio 2:3:5, or according to 
some writers, 1:1:2, and others, 2:3:4; it is probable that the basis of these suggestions is the ratio of harmonic intervals 
in music, but the connection is untraced and remote.” Sabine was very sceptical to such suggestions. 

In 1942, Volkman [2] suggested different ratios based on 21/3 and presented a diagram with recommended ratios for 
different room sizes, e.g. 1:1.25:1.6 for small rooms and 1:1.6:2.5 for average sized rooms. An early scientifically based 
study of room dimension ratios was published in 1946 by Bolt [3]. Since then, there have been a vast number of 
publications on the topic. Cox and D’Antonio [4] applied an image source model with source in one corner and receiver 
in the opposite corner to calculate the frequency response. By numerical optimisation the room dimensions were 
changed to achieve the flattest possible frequency response in the frequency range 20 Hz - 200 Hz. They found the 
worst case ratio to be (1:1.075:1.868), but they did not report the optimized dimension ratios. The same idea was 
applied recently by Meissner [5], who reported very detailed results. 

The problem studied in this paper is, how to choose the room dimensions in order to obtain a room with the best 
possible acoustic support for playing musical instruments. Three different criteria for this are applied in the following. 



   

2 Normal modes in a rectangular room 

A rectangular room with room dimensions L, W, and H as shown in Figure 1, have normal modes with frequencies fn 
calculated with the formula: 
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Here, c is the speed of sound in air (c = 343.3 m/s at 20 °C) and the modal numbers are (nx, ny, nz). It is assumed that L ≥ 
W ≥ H. 

 

Figure 1: Rectangular room with main dimensions. 

3 Smoothness of the frequency response 

The first criterion for evaluation of the distribution of the room modes is to look at the frequency response between 20 
Hz and 200 Hz. Since the frequency response (or transfer function) depends strongly on the position of source and 
receiver in the room, the global frequency response is considered. This is obtained with the source and receiver in 
opposite corners, and this ensures all room modes to be included in the frequency response. Figure 2 shows an example 
of a calculated global frequency response using the modal energy analysis model by Rindel [6, 7]. 

 

 

Figure 2: Calculated global frequency response from 20 Hz to 200 Hz of an 85 m3 room with dimensions 6.36 m * 4.44 
m * 3.00 m. All surfaces have the absorption coefficient α = 0.20. The black line is the best-fit regression line for a 2nd 

order polynomial.  

The smoothness of the frequency response was used as a criterion by Meissner [5], who compared the frequency 
response with a 2nd order polynomial and used the normalised correlation coefficient as criterion for the smoothness. 



   

With this method he could produce graphs like those shown in Figure 3. A drawback that makes this method a little 
complicated is, that the results depend not only on the room dimension ratio, but also on the absolute volume of the 
room and on the absorption coefficients of surfaces. Higher absorption means more shallow room modes with increased 
bandwidth and thus increases smoothness. A small volume means more focus on the lowest room modes, which 
naturally are more separated than the higher room modes. A large room volume means that the lowest room modes are 
well below 20 Hz and thus not within the frequency range being analysed. 

 

 

Figure 3: Degree of smoothness of frequency response as function of dimension ratio in three different room volumes. 
Source and receiver are in opposite room corners and all surfaces have the absorption coefficient α = 0.20. The colour 

scale indicated the degree of smoothness with 1 as maximum. The dashed line is the linear regression line given in 
Equation (2). Based on figures adapted from Meissner [5]. 

The results shown in Figure 3 are for three different room volumes, 50 m3, 150 m3 and 300 m3. The following 
dimension ratios are found to produce very smooth frequency responses: A (1:1.20:1.45), B (1:1.40:1.89), and C 
(1:1.48:2.12). The three rooms are shown in isometric view in Figure 4. 

 

Figure 4: Isometric view of three rooms with dimension ratios A, B and C, respectively. 



   

The optima marked with numbers in Figure 3 are A in the 300 m3 room, C in the 50 m3 room, and all three optima in 
the 150 m3 room. In the original paper by Meissner [5], a second optimum was found in the 50 m3 room, (1:2.55:3.44). 
However, this is not usable in practice because the room height would be only H = 1.8 m, and thus this result is not 
included here. The optimum C is realistic in a 50 m3 room, as it leads to the room height H = 2.6 m. 

From the graphs in Figure 3 it is interesting to observe that the “nearly-optimal” areas (red and orange) form a ridge 
along a line through the three points A, B, and C. The three points are approximately on a straight line, and the equation 
for the regression line is: 

 𝐿 = 2.3558 ∙  𝑊 − 1.3838 ∙ 𝐻        (𝑅ଶ = 0.996) (2) 

4 Number of musical tones supported by room modes 

The second criterium for evaluation of the distribution of the room modes is to look at the tones produced by musical 
instruments. Figure 5 shows the keys of a common piano being a standard instrument in many music rehearsal rooms.  

 
Figure 5: The keys of a common piano. The lowest three octaves from A0 to A3 are considered for the present analysis. 

 

 

Figure 6: Number of modes per semitone from A0 to A3 in the example room. Nine of the tones are not supported by a 
room mode, 28 out of 37 tones are supported. 

Since the density of the room modes increases strongly with frequency, it is only the low frequency range that need to 
be analysed. This is chosen to be the three lowest octaves on the piano covering 37 semitones from A0 = 27.5 Hz to A3 
= 220 Hz. The method is to count the number of room modes for each musical tone (plus/minus a quarter tone). The 



   

result is the number of tones covered be one or more room modes, and this number should be as large as possible. The 
maximum number is 37, and this can only be reached in rooms with a volume of 1000 m3 or more. This method was 
introduced by Rindel [6].  

The example room of 85 m3 used previously in Figure 2 is used again for showing the number of semitones supported 
by room modes, see Figure 6. This room has dimensions as room C in Figure 4, and for a room of this rather small size 
the coverage of musical tones is good (28 of 37). 

Figure 7 shows the results when the room dimension ratios are varied, in this case for a 150 m3 room. The best results 
are found in roughly three zones that are centered around the previously found optima A, B, and C. The worst results 
are for the cubic room and the (1,1,2) and (1,2,2) cases. 

 

Figure 7: Number of tones supported by room modes within the range A0 to A3 (37 semitones in total). The results are 
for a 150 m3 room with various dimension ratios. High numbers are best. The optimum dimension ratios found by 

Meissner are indicated by the letters A, B and C. 

5 Frequency spacing between room modes 

The third criterion applied here is solely based on the frequency distribution of the room modes. Thus, the volume and 
absorption properties are not involved. The idea to use the frequency spacing between room modes as a criterion was 
first applied by Bolt [3].  

The frequency spacing index is the normalized variance of the intervals between the low frequency room modes when 
arranged in order of increasing frequency. The frequency spacing index ψ (n) is calculated by the formula: 
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where  n is the number of modes considered,  

 f1 is the frequency of the first mode, 

 fn is the frequency of mode number n, 

 δ is the frequency difference between one mode and the previous one. 

The average frequency spacing is:  
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Then, ψ (25) is the frequency spacing index for the first 25 room modes. 

For the 85 m3 example room from Figure 2, the first 25 room modes are shown in Table 1, sorted with increasing 
frequency. The frequency intervals are also displayed in the histogram in Figure 8. The calculated frequency spacing 
index is ψ = 1.54, which is very good. The frequency spacing index should be as low as possible, and the (unrealistic) 
theoretical ideal is ψ = 1, corresponding to perfectly equal spacing of the room modes. In a real room, the lowest 
possible index is ψ = 1.3 obtained for the room dimension ratio (1:1.20:1.45), i.e. the same as the optimum A found 
above in section 3.  

Figure 9 shows the calculated frequency spacing index as function of room dimension ratios. It should be noted that 
these results do not depend on the volume of the room. A bad case is the cubic room (1:1:1), which has ψ = 3.7. Even 
worse is the case with dimension ratios (1:1:2), which has ψ = 3.9. The third bad case has dimension ratios (1:2:2) and 
ψ = 3.3. The best results are grouped in three areas that coincide almost perfectly with the three optima A, B, and C 
found previously using the smooth frequency response as criterium. 

Table 1: The first 25 room modes, their frequency fn and frequency interval δ for the example room. 

nx ny nz fn [Hz] δ [Hz] 
1 0 0 27,0  

0 1 0 38.7 11.7 

1 1 0 47.2 8.5 

2 0 0 54.0 6.8 

0 0 1 57.2 3.2 

1 0 1 63.3 6.0 

2 1 0 66.4 3.1 

0 1 1 69.1 2.7 

1 1 1 74.1 5.1 

0 2 0 77.3 3.2 

2 0 1 78.7 1.3 

3 0 0 81.0 2.3 

1 2 0 81.9 0.9 

2 1 1 87.7 5.8 

3 1 0 89.7 2.1 

2 2 0 94.3 4.6 

0 2 1 96.2 1.9 

3 0 1 99.1 3.0 

1 2 1 99.9 0.8 

3 1 1 106.4 6.5 

4 0 0 108.0 1.5 

2 2 1 110.3 2.3 

3 2 0 112.0 1.7 

0 0 2 114.4 2.5 

4 1 0 114.7 0.2 

 

 

 

 



   

 

Figure 8: Histogram of frequency intervals between the first 25 room modes for the example room. The average is 3.7 
and the frequency spacing index is 1.54. 

 

Figure 9: Frequency spacing index for the first 25 room modes ψ (25) as function of the room dimension ratios. Low 
values shown in green colour are best and high values (in red) are worst. The optimum dimension ratios found by 

Meissner are indicated by the letters A, B and C. 

 



   

6 Discussion 

Three different criteria have been applied for the evaluation of the acoustical consequences of the room dimension ratio. 
The results coincide in the optimum dimension ratios being located quite accurately around three points labelled A, B, 
and C in Figure 10. The results shown in Figures 2 and 9 show that the good dimension ratios form a kind of ridge that 
peaks at the points A, B, and C. However, this is not so clear in the results from the number of supported musical tones, 
see Figure 7. 

 

 

 

 

Figure 10: Comparison of optimum dimension ratios. Blue dots: The three optima found be Meissner [5] and the linear 
regression line given in equation (2). Orange dots: Dimension ratios following the 21/3 rule, (1:21/3:22/3) and (1:22/3:24/3). 

The dashed-dotted line is for L/W = W/H. 

 

Figure 10 also shows the “old” recommendations for dimension ratios following the 21/3 rule. The dashed-dotted line 
indicates dimension ratios where length/width is the same as width/height. It is noted that the three optima and the 
linear regression line through the optima are very close to obeying the condition L/W = W/H. 

A comparison of the results using either a smooth frequency response or the frequency spacing index is shown in Figure 
11. The areas within the red contours have ψ ≤ 1.5 and thus a good frequency distribution. The three optima based on a 
smooth frequency response are located within the red contours. It is observed that optimum A has the lowest (best) 
frequency spacing index, and the red contour around A covers a larger area than the contours around B and C. 

The choice of ψ ≤ 1.5 is rather arbitrary, and if we instead accept a value of 1.6 as sufficient, the three areas of nearly 
optimum dimension ratios tends to merge into a long, narrow ridge, see Figure 9. Thus, some deviation from the precise 
optimum dimension ratios should be allowed, and then it makes sense to use the regression line, equation (2), to find the 
third dimension as a function of the first two room dimensions.  

In general, simple dimension ratios of 1 and 2 should be avoided. The results have shown that dimension ratios (1:1:1), 
(1:1:2), and (1:2:2) are particularly bad. However, the results have also shown that the dimension ratio (1:1.44:2), that is 
on the regression line, is not as bad as could be expected because it contains the natural number 2. 

 



   

 

 

Figure 11: Comparison of two criteria for optimum dimension ratios. Blue dots: For smoothness of the frequency 
response. Coloured zones: For minimum frequency spacing index. Both methods point at three optimum zones, labelled 

A, B and C. 

Table 2: Collection of bad and good dimension ratios and calculated quality criteria for a 150 m3 room. Colour code of 
results from very bad (red) to very good (green). 

Label W/H L/H H(m) W(m) L(m) R2 # FSI 

 1 1 5.3 5.3 5.3 0.73 22 3.71 

 1 2 4.2 4.2 8.4 0.69 23 3.91 

 1 3 3.7 3.7 11.1 0.69 26 3.00 

 1 4 3.3 3.3 13.4 0.50 24 2.74 

 2 2 3.3 6.7 6.7 0.68 24 3.28 

 2 3 2.9 5.8 8.8 0.72 27 2.16 

 2 4 2.7 5.3 10.6 0.67 26 2.70 
A 1.20 1.45 4.4 5.3 6.4 0.86 31 1.33 
B 1.89 1.40 3.8 5.4 7.3 0.85 29 1.51 
C 2.12 1.48 3.6 5.4 7.7 0.83 30 1.54 
* 1.44 2.00 3.7 5.4 7.5 0.82 28 1.68 

 

The three different quality criteria that have been applied, are compared in Table 2. The criteria are the correlation 
coefficient R2 for the smoothness of the frequency response, the number of supported musical tones (#), and the 
frequency spacing index. 

The upper part of the table shows results for a selection of obviously bad dimension ratios based on natural numbers 1 
to 4. The lower part of the table shows results for the three optima labelled A, B, and C, plus the ratio (1:1.44:2), which 
is not optimum, but appears to be surprisingly good despite the ratio 2 between length and height (labelled with *).  



   

The first observation from Table 2 is that the three criteria are in reasonably good agreement in terms of what is good 
and what is bad. However, the rank order of the bad rooms differs. The smoothness of frequency response points at 
(1:1:4) as a worst case; looking at the number of musical tones, points at the cubic room (1:1:1), and the frequency 
spacing index finds the case (1:1:2) to be the worst one. 

The second observation is that all three criteria agree that A is the best room, closely followed by the other rooms in the 
group of good rooms. 

A third observation is that all the good rooms have approximately the same room width, around 5.3 m, which is also the 
dimensions of the cubic room. This is not a big surprise, because it is just a consequence of the condition L/W = W/H, 
which was found above for rooms close to the regession line for optimum dimension ratios. 

7 Suggested method for choosing room dimensions 

For practical use there are two possibilities, either to aim at one of the three optimum dimension ratios, or to be less 
strict and choose dimensions that are nearly optimal. 

 

Figure 12: Relation between volume and room height, width and length for the optimum dimension ratios A, B, and C. 
The example shows alternative optimum volumes for a room height of 4 m, and the corresponding widths and lengths. 

For each of the optimum dimensions ratios, A, B, and C, there is a simple relation between the volume and the room 
height as shown in the graph in Figure 12. As an example we consider the design of a rehearsal room with the height 
given to be 4 m. Optimum dimension ratios can be achieved with a volume of 110 m3, 170 m3 or 200 m3, depending on 
which set of dimension ratios is chosen. Then it is straight forward to calculate the actual width and length. Optimum A 
gives (W, L) = (4.9 m, 5.8 m), optimum B gives (W, L) = (5.6 m, 7.6 m), while optimum C gives (W, L) = (5.9 m, 8.5 
m), see the dots on the black lines in Figure 12. 

The other possibility is to design for nearly optimal dimension ratios. This opens for a wider range of room dimensions, 
which can make it easier to fulfil various practical constraints. There are four simple steps: 

1. Make a decision on the volume V that the room should have, 
2. The width of the room should be close to 𝑊 =  √𝑉

య  (see the red curve in Figure 12), 
3. Choose the room height H so that W/H is within the range 1.1 to 1.6, 
4. Calculate the room length L from equation (2).  

As a simple rule-of-thumb, the length/width ratio should be close to the width/height ratio. However, equation (2) is 
more accurate. When W/H is within the range 1.1 to 1.6 and L fulfils equation (2), the frequency spacing index is ψ ≤ 
1.75, see Figure 13. 



   

 

Figure 13: The frequency spacing index as function of the width-to-height ratio when the length L fulfils equation (2). 
The index should be as low as possible. The dashed line is the suggested maximum for nearly optimum dimension 

ratios. 

While the frequency spacing index is independent on volume, the number of musical tones supported by room modes 
depends strongly on volume, see Figure 14. The need for choosing good room dimensions is more important in small 
rooms than in large rooms. 

 

Figure 14: Number of tones between A0 and A3 supported by room modes for three different room volumes as function 
of the width-to-height ratio when the length L fulfils equation (2). The number should be as high as possible; 37 is the 

maximum. 

In very small rooms, e.g. practice rooms with volume below 30 m3, it can be relevant to make the width smaller than the 
height, so that L ≥ H ≥ W. Then the middle red line in Figure 12 gives the height as function of volume. An example is a 
20 m3 practice room, which fulfils optimum A with the height 2.75 m and area 2.25 m * 3.25 m. However, the lowest 
two octaves in the musical scale (tomes below A2 = 110 Hz) are not supported in such a small room. 

  



   

8 Conclusion 

Rooms for music with volumes up to 300 m3 need careful consideration of the dimension ratio in order to offer a good 
acoustical support to the musical instruments. The frequency response at low frequencies should be as smooth as 
possible, which is closely connected to frequency distribution of the low-frequency room modes. 

Three optimum dimension ratios have been found in the literature and supported by the present work. However, nearly 
optimum dimension ratios can be obtained within a certain range around the optimum, so good results can be obtained 
in practice with less strict dimension ratios. 

Three different criteria have been applied to evaluate the goodness of the rooms; the smoothness of the frequency 
response between 20 Hz and 200 Hz, the number of musical tones between 27.5 Hz and 220 Hz supported by at least 
one room mode, and the frequency spacing index for the 25 lowest room modes. All three methods point at the same 
three optima for the room dimension ratio.  

Nearly optimum dimension ratios are found close to a linear regression line that establishes a relation between L/H and 
W/H. Using this relation for the room design ensures a nearly optimum dimension ratio with more freedom that using 
only fixed optimum dimension ratios. The W/H ratio can be in the range from 1.1 to 1.6, and the L/W ratio should 
preferably be close to the same ratio. This implies that the width of the room should be close to √𝑉

య . 

In very small rooms it may be necessary to make the width smaller than the height in order to obtain enough room 
height. 
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